Molecular Complexity From Aromatics

Vishwakarma Singh, F. N. A. Sc.; F.N. A.

Molecular Hybrid

Platencin

Department of Chemistry
Indian Institute of Technology Bombay

17th August 2011
Genesis of the Story

Capnella imbricate

relieves neuropathic pain defence agent against microorganism

Coriolus consors

Leontopodium alpinum

modhephene

Coriolin

antibiotic properties
Towards Linearly Fused Polyquinananes

The Idea

Phase 1: Synthesis of I

Phase 2: Photochemistry

Phase 3: Cleavage of cyclopropane ring

Unknown
Phase I: Synthesis of Chromophoric System

Development of indirect route was necessary:

Aromatics \[\rightarrow\] Bicyclo[2.2.2]octane ring system

Periselectivity
Regio- and Stereoselectivity
Atom Economy
Efficient generation of Molecular Complexity

not formed

Singh & Thomas
Manipulation of the Oxirane Ring

Oxidation

- CO₂

NH₄Cl, MeOH, Δ

green pathway

MeOH

black arrows

6e, electrocyclic

reduction

MeOH, Zn

6e, electrocyclic

MeOH, Zn

6e, electrocyclic

MeOH, Zn

6e, electrocyclic

MeOH, Zn

6e, electrocyclic
Modulation of Reactivity

\[
\text{MeOH-H}_2\text{O}\quad \text{Zn, NH}_4\text{Cl} \quad \text{rt}
\]

\[
\text{dioxane, } \Delta
\]

\[
85\%
\]

\[
\text{Jones'}
\]

\[
\Delta
\]

Phase 1 completed
Phase 2. Exploratory Photochemical Reactions

1,3- and 1,2-Shift:
Singh & Porinchu

Decarbonylation:
Singh, Thomas & Sharma,
Phase 3: Cleavage of Cyclopropane Ring

An Alternate Route to Polyquinanes: Photoreaction and cleavage in tandem

\[\text{Singh, Prathap & Porinchu} \\
\text{\textit{J. Org. Chem.} \textbf{1998}, \textit{83}, 4011-17.} \]

\[\text{Singh & Samanta} \\
\text{\textit{Tetrahedron Lett.} \textbf{1999}, 383-6.} \]

\[\text{Singh & Vedantham & Sahu} \\
\text{\textit{Tetrahedron Lett.} \textbf{2002}, 519-22.} \]

\[\text{Singh & Sharma} \\
\text{\textit{J.C.S. Perkin 1} \textbf{1998}, 305-312.} \]

\[\text{For a brief summary} \\
Molecular Diversity from Aromatics
Professor Goverdhan Mehta, FRS
National Research Professor

Mehta & Singh, *Hybrid Systems through Natural product Leads: An Approach Towards New Molecular Entities*

Towards Molecular Hybrids: A Philosophical Excursion

Digoxin

Useful in the treatment of irregular heart rhythms, and heart failure that cannot be controlled by other medication.

Digitalis lanata

Steroid-polyquinane Hybrid
TBTH, AIBN, Δ

1. Zn, NH$_4$Cl, aq. MeOH
2. Jones', Δ

Isolation: Wang & co-workers

Broad-spectrum antibacterial activity. Inhibitor of *Staphylococcus aureus* fatty acid biosynthesis (FabF) and (FabH)

Active against gram positive bacteria (including a variety of drug resistant bacteria)

Platencin

(Streptomyces Platencis MA 7339)

Banwell, *Org.Lett.* **2008**, *10*, 4465. (Australia)

Platencin

construction of bridged bicyclo[2.2.2]octane framework

annulation of the six membered ring through one of the bridgeheads

Stereochemical disposition of enone ring, ethano bridges and exocyclic alkene

Key Intermediate

Major challenges

NR₂

TBSO

MeSSCO

bicyclo[3.2.1]octane

bicyclo[2.2.2]octane

undesired

Platencin

All the 13 carbons of platencin core, its unique network and functionalities are latent in the aromatic precursor.

Tricyclic ring having correct relative stereochemistry and functional group disposition is created in the very beginning of the synthesis.
Oxidative dearomatization and cycloaddition

Synthesis:
only one step need fail to jeopardize the whole program!
An alternative to induce cycloaddition

140 °C
6 h

88 %

Retro $\pi^4s+\pi^2s-\pi^4s+\pi^2s$ cycloaddition cascade
Synthesis of the Platencin core

1. Zn, NH₄Cl, aq. MeOH
2. H₂, Pd-C
3. TsCl, Et₃N

80%

1. Pd(dba)₂, (Bu)₃P, Et₃N, HCOOH
2. H₃O⁺

TMSOTf

IBX

Synthesis of the Platencin core
A formal total synthesis of (±)-platencin

The concept and methodology thus presented manifests its novelty, adaptability & diversity in creating molecular complexity from simple aromatic precursors.

Singh, Sahu, Bansal & Mobin
Conclusion
Acknowledgement

DST & CSIR New Delhi for continuing financial support.
DST for a J.C. Bose fellowship.

I thank Professors Rangan Banerjee and P. V. Balaji for the review paper award.

I also take this opportunity to thank all the staff members of IRCC for their cooperation, efficient management of research grants and related affairs, and pleasant behaviour.

I am grateful to IIT Bombay for the faculty position (chair professor, recently) & providing conducive surroundings for creativity and learning.

I am grateful to all my students (Past & Present) for their sincerity, dedication and hard work.

Thank You for your patience!