Dilation of commuting operators

B. K. Das

Indian Institute of Technology Bombay

November 2
An operator T on a Hilbert space H is normal if $TT^* = T^* T$.

Question: How to study operators which are not normal?
An operator T on a Hilbert space H is normal if $TT^* = T^*T$.

Normal operators are well-understood using spectral theory.
Introduction

- An operator T on a Hilbert space H is normal if $TT^* = T^*T$.
- Normal operators are well-understood using spectral theory.
- **Question:** How to study operators which are not normal?
An operator T on a Hilbert space H is normal if $TT^* = T^*T$.

Normal operators are well-understood using spectral theory.

Question: How to study operators which are not normal?

An operator U on a Hilbert space H is a unitary if $UU^* = U^*U = I_H$.
An operator T on a Hilbert space H is normal if $TT^* = T^* T$.
Normal operators are well-understood using spectral theory.
Question: How to study operators which are not normal?
An operator U on a Hilbert space H is a unitary if $UU^* = U^* U = I_H$.

Definition
Let T be a contraction on H. A unitary U on $K \supseteq H$ is a dilation of T if (?) $T = P_H U|_H$, i.e.

$$U = \begin{bmatrix} T & * \\ * & * \end{bmatrix}$$

with respect to the decomposition $K = H \oplus H^\perp$.

An operator T on a Hilbert space H is normal if $TT^* = T^* T$.

Normal operators are well-understood using spectral theory.

Question: How to study operators which are not normal?

An operator U on a Hilbert space H is a unitary if $UU^* = U^* U = I_H$.

Definition

Let T be a contraction on H. A unitary U on $K \supseteq H$ is a dilation of T if $T^n = P_H U^n |_H$ for all $n \in \mathbb{N}$, i.e.

$$U^n = \begin{bmatrix} T^n & \ast \\ \ast & \ast \end{bmatrix}$$

with respect to the decomposition $K = H \oplus H^\perp$. In this case, $p(T) = P_H p(U) |_H$ for any polynomial $p \in \mathbb{C}[z]$.

B. K. Das

Dilation of commuting operators
Definition

Let $T = (T_1, \ldots, T_d)$ be a d-tuple of commuting contractions on H. A d-tuple of commuting unitary $U = (U_1, \ldots, U_d)$ on $K \supseteq H$ is a dilation of T if $p(T) = P_H p(U)|_H$ for any polynomial $p \in \mathbb{C}[z_1, \ldots, z_d]$, i.e.

$$p(U) = \begin{bmatrix} p(T) & * \\ * & * \end{bmatrix}$$

with respect to the decomposition $K = H \oplus H^\perp$.
Theorem (Nagy-Foias)

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.
Theorem (Nagy-Foias)

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

- von Neumann inequality: For any polynomial $p \in \mathbb{C}[z]$,
 \[\| p(T) \| \leq \sup_{z \in \mathbb{D}} |p(z)|. \]
Theorem (Nagy-Foias)

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

- **von Neumann inequality:** For any polynomial $p \in \mathbb{C}[z],$

\[
\|p(T)\| \leq \sup_{z \in \mathbb{D}} |p(z)|.
\]

Theorem (T. Ando)

Let (T_1, T_2) be a pair of commuting contractions on H. Then (T_1, T_2) dilates to a pair of commuting unitaries (U_1, U_2).
Theorem (Nagy-Foias)

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

- von Neumann inequality: For any polynomial $p \in \mathbb{C}[z],$
\[
\|p(T)\| \leq \sup_{z \in \mathbb{D}} |p(z)|.
\]

Theorem (T. Ando)

Let (T_1, T_2) be a pair of commuting contractions on H. Then (T_1, T_2) dilates to a pair of commuting unitaries (U_1, U_2).

- von Neumann inequality: For any polynomial $p \in \mathbb{C}[z_1, z_2],$
\[
\|p(T_1, T_2)\| \leq \sup_{(z_1, z_2) \in \mathbb{D}^2} |p(z_1, z_2)|.
\]
Theorem (Nagy-Foias)

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

- von Neumann inequality: For any polynomial $p \in \mathbb{C}[z],$

 $$\|p(T)\| \leq \sup_{z \in \mathbb{D}} |p(z)|.$$

Theorem (T. Ando)

Let (T_1, T_2) be a pair of commuting contractions on H. Then (T_1, T_2) dilates to a pair of commuting unitaries (U_1, U_2).

- von Neumann inequality: For any polynomial $p \in \mathbb{C}[z_1, z_2],$

 $$\|p(T_1, T_2)\| \leq \sup_{(z_1, z_2) \in \mathbb{D}^2} |p(z_1, z_2)|.$$

- Neither dilation nor the von Neumann inequality holds for d-tuples of commuting contractions with $d > 2$.

B. K. Das Dilation of commuting operators
Theorem (−& Sarkar, 17)

Let \((T_1, T_2)\) be a pair of commuting contractions on \(H\) with \(T_1\) is pure and \(\dim \mathcal{D}_{T_i} < \infty, \ i = 1, 2\). Then \((T_1, T_2)\) dilates to \((M_z, M_\Phi)\) on \(H^2_{\mathcal{D}_{T_1}}(\mathbb{D})\). Therefore, there exists a variety \(V \subset \overline{\mathbb{D}^2}\) such that

\[
\|p(T_1, T_2)\| \leq \sup_{(z_1, z_2) \in V} |p(z_1, z_2)| \quad (p \in \mathbb{C}[z_1, z_2]).
\]

If, in addition, \(T_2\) is pure then \(V\) can be taken to be a distinguished variety of the bidisc.
Let $d > 2$ and $1 \leq p < q \leq d$.

- $\mathcal{T}^d_{p,q} = \{(T_1, \ldots, T_d) : \hat{T}_p, \hat{T}_q$ satisfy Szegö positivity and \hat{T}_p is pure\}
Let $d > 2$ and $1 \leq p < q \leq d$.

- $\mathcal{T}_{p,q}^d = \{(T_1, \ldots, T_d) : \hat{T}_p, \hat{T}_q \text{ satisfy Szegö positivity and } \hat{T}_p \text{ is pure}\}$

Theorem (−, Barik, Haria & Sarkar, 18)

Let $T = (T_1, \ldots, T_d) \in \mathcal{T}_{p,q}^d$. Then T dilates to

$$(M_{z_1}, \ldots, M_{z_{p-1}}, M_{\Phi_p}, M_{z_{p+1}}, \ldots, M_{z_{q-1}}, M_{\Phi_q}, M_{z_q}, \ldots, M_{z_{d-1}}),$$

on $\mathcal{H}_E^2(\mathbb{D}^{d-1})$ with

$$\Phi_p(z)\Phi_q(z) = \Phi_q(z)\Phi_p(z) = z_p I_E,$$

for some Hilbert space E.
Problem 1: Characterize d-tuples of commuting contractions which admit isometry/unitary dilations.
Problem 1: Characterize d-tuples of commuting contractions which admit isometry/unitary dilations.

Problem 2: Find a characterization d-tuples of commuting contractions which can be dilated to d-isometries.
Problem 1: Characterize d-tuples of commuting contractions which admit isometry/unitary dilations.

Problem 2: Find a characterization d-tuples of commuting contractions which can be dilated to d-isometries.

Problem 3: What are the d-tuples of commuting contractions which satisfy vN inequality?
References

Thank You