Dilation of commuting operators

B. K. Das

Indian Institute of Technology Bombay

November 2

• An operator T on a Hilbert space H is normal if $TT^* = T^*T$.

- An operator T on a Hilbert space H is normal if $TT^* = T^*T$.
- Normal operators are well-understood using spectral theory.

- An operator T on a Hilbert space H is normal if $TT^* = T^*T$.
- Normal operators are well-understood using spectral theory.
- Question: How to study operators which are not normal?

- An operator T on a Hilbert space H is normal if $TT^* = T^*T$.
- Normal operators are well-understood using spectral theory.
- Question: How to study operators which are not normal?
- An operator U on a Hilbert space H is a unitary if $UU^* = U^*U = I_H$.

- An operator T on a Hilbert space H is normal if $TT^* = T^*T$.
- Normal operators are well-understood using spectral theory.
- Question: How to study operators which are not normal?
- An operator U on a Hilbert space H is a unitary if $UU^* = U^*U = I_H$.

Definition

Let T be a contraction on H. A unitary U on $K \supseteq H$ is a dilation of T if (?) $T = P_H U|_{H}$, i.e.

$$U = \begin{bmatrix} T & * \\ * & * \end{bmatrix}$$

with respect to the decomposition $K = H \oplus H^{\perp}$.

- An operator T on a Hilbert space H is normal if $TT^* = T^*T$.
- Normal operators are well-understood using spectral theory.
- Question: How to study operators which are not normal?
- An operator U on a Hilbert space H is a unitary if $UU^* = U^*U = I_H$.

Definition

Let T be a contraction on H. A unitary U on $K \supseteq H$ is a dilation of T if $T^n = P_H U^n|_H$ for all $n \in \mathbb{N}$, i.e.

$$U^n = \begin{bmatrix} T^n & * \\ * & * \end{bmatrix}$$

with respect to the decomposition $K = H \oplus H^{\perp}$. In this case, $p(T) = P_H p(U)|_H$ for any polynomial $p \in \mathbb{C}[z]$.

Definition

Let $T=(T_1,\ldots,T_d)$ be a d-tuple of commuting contractions on H. A d-tuple of commuting unitary $U=(U_1,\ldots,U_d)$ on $K\supseteq H$ is a dilation of T if $p(T)=P_Hp(U)|_H$ for any polynomial $p\in\mathbb{C}[z_1,\ldots,z_d]$, i.e.

$$p(U) = \begin{bmatrix} p(T) & * \\ * & * \end{bmatrix}$$

with respect to the decomposition $K = H \oplus H^{\perp}$.

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

ullet von Neumann inequality: For any polynomial $p\in\mathbb{C}[z]$,

$$||p(T)|| \leq \sup_{z \in \mathbb{D}} |p(z)|.$$

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

ullet von Neumann inequality: For any polynomial $p\in\mathbb{C}[z]$,

$$||p(T)|| \leq \sup_{z \in \mathbb{D}} |p(z)|.$$

Theorem (T. Ando)

Let (T_1, T_2) be a pair of commuting contractions on H. Then (T_1, T_2) dilates to a pair of commuting unitaries (U_1, U_2) .

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

• von Neumann inequality: For any polynomial $p \in \mathbb{C}[z]$,

$$||p(T)|| \leq \sup_{z \in \mathbb{D}} |p(z)|.$$

Theorem (T. Ando)

Let (T_1, T_2) be a pair of commuting contractions on H. Then (T_1, T_2) dilates to a pair of commuting unitaries (U_1, U_2) .

• von Neumann inequality: For any polynomial $p \in \mathbb{C}[z_1, z_2]$,

$$\|p(T_1, T_2)\| \leq \sup_{(z_1, z_2) \in \mathbb{D}^2} |p(z_1, z_2)|.$$

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

• von Neumann inequality: For any polynomial $p \in \mathbb{C}[z]$,

$$||p(T)|| \leq \sup_{z \in \mathbb{D}} |p(z)|.$$

Theorem (T. Ando)

Let (T_1, T_2) be a pair of commuting contractions on H. Then (T_1, T_2) dilates to a pair of commuting unitaries (U_1, U_2) .

• von Neumann inequality: For any polynomial $p \in \mathbb{C}[z_1, z_2]$,

$$\|p(T_1, T_2)\| \leq \sup_{(z_1, z_2) \in \mathbb{D}^2} |p(z_1, z_2)|.$$

 Neither dilation nor the von Neumann inequality holds for d-tuples of commuting contractions with d > 2.

Explicit dilation and sharp vN inequality

Theorem (–& Sarkar, 17)

Let (T_1, T_2) be a pair of commuting contractions on H with T_1 is pure and $\dim \mathcal{D}_{T_i} < \infty$, i = 1, 2. Then (T_1, T_2) dilates to (M_z, M_Φ) on $H^2_{\mathcal{D}_{T_1}}(\mathbb{D})$. Therefore, there exists a variety $V \subset \overline{\mathbb{D}^2}$ such that

$$\|p(T_1, T_2)\| \leq \sup_{(z_1, z_2) \in V} |p(z_1, z_2)| \quad (p \in \mathbb{C}[z_1, z_2]).$$

If, in addition, T_2 is pure then V can be taken to be a distinguished variety of the bidisc.

Dilation of a class of commuting operators

Let d > 2 and $1 \le p < q \le d$.

• $\mathcal{T}_{p,q}^d = \{(T_1, \dots, T_d) : \hat{T}_p, \hat{T}_q \text{ satisfy Szegö positivity and } \hat{T}_p \text{ is pure}\}$

Dilation of a class of commuting operators

Let d > 2 and $1 \le p < q \le d$.

• $\mathcal{T}_{p,q}^d = \{(T_1, \dots, T_d) : \hat{T}_p, \hat{T}_q \text{ satisfy Szegö positivity and } \hat{T}_p \text{ is pure}\}$

Theorem (-, Barik, Haria & Sarkar, 18)

Let
$$T=(T_1,\ldots,T_d)\in\mathcal{T}^d_{p,q}$$
. Then T dilates to

$$(M_{z_1}, \ldots, M_{z_{p-1}}, M_{\Phi_p}, M_{z_{p+1}}, \ldots, M_{z_{q-1}}, M_{\Phi_q}, M_{z_q}, \ldots, M_{z_{d-1}}),$$

on $H^2_{\mathcal{E}}(\mathbb{D}^{d-1})$ with

$$\Phi_{\rho}(\mathbf{z})\Phi_{q}(\mathbf{z}) = \Phi_{q}(\mathbf{z})\Phi_{\rho}(\mathbf{z}) = z_{\rho}I_{\mathcal{E}},$$

for some Hilbert space \mathcal{E} .

Problems

Problem 1: Characterize *d*-tuples of commuting contractions which admit isometry/unitary dilations.

Problems

Problem 1: Characterize *d*-tuples of commuting contractions which admit isometry/unitary dilations.

Problem 2: Find a characterization d-tuples of commuting contractions which can be dilated to d-isometries.

Problems

Problem 1: Characterize *d*-tuples of commuting contractions which admit isometry/unitary dilations.

Problem 2: Find a characterization d-tuples of commuting contractions which can be dilated to d-isometries.

Problem 3: What are the d-tuples of commuting contractions which satisfy vN inequality?

References

- J. Agler and J. E. McCarthy, *Distinguished Varieties*, Acta Math. **194** (2005), 133-153.
 - B. K. Das and J. Sarkar, *Ando dilations, von Neumann inequality, and distinguished varieties*, Journal of Functional Analysis **272** (2017), 2114 2131.
 - S. Barik, B. K. Das, K. J. Haria and J. Sarkar, *Isometric dilations* and von Neumann inequality for a class of tuples in the polydisc, Transaction of the American Mathematical Society (to appear).

Thank You