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Refined Plate Theory and Its Variants
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Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

The development of a new refined plate theory and its two simple variantsis given. The theories have strong com-
monality with the equations of classical plate theory (CPT). However, unlike CPT, these theories assume that lateral
and axial displacements have bending and shear components such that bending components do not contribute to-
ward shear forces and, likewise, shearing components do not contribute toward bending moments. The theory and
one of its variants are variationally consistent, whereas the second variant is variationally inconsistent and uses the
relationships between moments, shear forces, and loading. It should be noted that, unlike any other refined plate
theory, the governing equation as well as the expressions for moments and shear forces associated with this variant
are identical to those associated with the CPT, save for the appearance of a subscript. The effectiveness of the theory
and its variants is demonstrated through an example. Surprisingly, the answers obtained by both the variants of the
theory, one of which is variationally consistent and the other one is inconsistent, are same. The numerical example
studied, therefore, not only brings out the effectiveness of the theories presented, but also, albeit unintentionally,
supports the doubts, first raised by Levinson, about the so called superiority of variationally consistent methods.

Nomenclature

a = length of plate in x direction

b = width of plate in y direction

D = platerigidity

E = Young’s modulus of plate material

G = shear modulus of plate material

h = thickness of plate

M., My, M,, = momentsdue to stresses oy, 0y, and t,,,
respectively

0., 0, = shear forces due to stresses 7, and .,
respectively

q = intensity of lateral load acting in z direction

u, v, w = displacementsin x, y, and z directions,
respectively

Up, Vp, Wy = bending components of displacements
u, v, and w, respectively

Ug, Vs, Wy = shear components of displacements
u, v, and w, respectively

X, ¥,2 = Cartesian coordinates

0-x-y-z = Cartesian coordinate system

Yiys Vyz» Yox = shear strains

€, €y, €; = normal strains

" = Poisson’s ratio of plate material

b4 = total potential energy

0Oy, Oy, O; = normal stresses

Tyy, Tyz, Ty = shear stresses

v? = Laplace operator in two (x and y) dimensions

Introduction

LATE analysis involving higher-ordereffects such as shear ef-

fects is an involved and tedious process. Even the considerably
simple and well-known first-order shear deformation theories such
as Reissner’s theory! and Mindlin’s theory? require solving two dif-
ferential equations involving two unknown functions and involve
the use of shear coefficient to approximately satisfy the constitutive
relationship between shear stress and shear strain. This coefficient
itself is a matter of research® even in case of beams.
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However, itispossibleto take into accountthe higher-ordereffects
and yetkeep the complexity at a considerably lower level. Notewor-
thy contributionsin this respect are from Librescu,* Levinson,’ and
Donnel® The present author’s previous work” may also be cited in
this respect. A critical review of the classical plate theory (CPT) as
well as some well-known higher order theoriesis given by Vasil’ev.?

Librescu’s approach* makes the use of weighted lateral displace-
ment. Constitutiverelations between shear stresses and shear strains
are satisfied. Reissner’s! formulation comes out as a special case of
Librescu’s approach?

Levinson® uses a strength of materials approach and his theory,
unlike that of Mindlin’s,> does not require adscititious considera-
tions to achieve its results. The governing equations Levinson® gets
for the motion of a plate are the same as those of Mindlin’s theory?
provided that the shear coefficient value associated with Mindlin’s
theory is taken as %

Donnel’s® approach is to make corrections to the classical plate
deflections. He assumes that the shear forces are uniformly dis-
tributed accross the thickness of the plate, and to rectify this as-
sumption, introducesa numerical factor, which needs to be adjusted.
Constitutive relations between transverse shear stresses and strains
are not satisfied exactly.

The present author’s previous work” utilizes physically meaning-
ful entities, for example, displacementand shear forces, for describ-
ing the displacementfield. Gross equilibrium equations of the plate
are utilized to get a fourth-order partial differential equation. The
theory is variationally inconsistentbut easy to use.

The purpose of this paper is to introduce a new variationally
consistent refined plate theory and, more important, its two simple
variants. One of the variantsis variationally consistent, but the other
one is inconsistent. Note that the theorieshave strong similarity with
the CPT, with respect to appearances and forms of some equations
and expressions. In fact, unlike any other refined plate theory, the
governing equation as well as the expressions for moments and
shear forces associated with the second variant of the theory are
identical to those associated with the CPT, save for the appearance
of a subscript.

For developingthe theories, axial as well as lateral displacements
are allowedtobe also influenced by shear forces. A unique feature of
the present work is that lateral and axial displacementshave bending
and shear components such that bending components do not con-
tribute toward shear forces and, likewise, shearing components do
not contribute toward bending moments. This results in simplifica-
tion in formulation.

Note that Mindlin’s formulation® comes out as a special case of
Levinson’s formulation’ and Reissner’s formulation' comes out as
a special case of Librescu’s formulation,* whereas CPT comes out
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as a special case of the refined plate theory and its variants presented
here. Therefore, it is the opinion of the author that if finite elements
basedon Levinson’s’ or Librescu’s* approachare used, the elements
will be prone to shear locking, whereas the finite elements based on
the theories presented here will be free from shear locking.

The effectiveness of the theories is demonstrated through an ex-
ample. Results obtained are highly accurate. Surprisingly, the an-
swers obtained by both the variants of the theory, one of which is
variationally consistentand the other one is inconsistent, are same.
The numerical example studied, therefore,notonly brings out the ef-
fectivenessof the theories presented, but also, albeitunintentionally,
supports the doubts, first raised by Levinson,” about the so-called
superiority of variationally consistent methods.

Plate Under Consideration

Considera plate (of lengtha, width b, and thickness /) of a homo-
geneous isotropic material. The plate occupiesin 0-x-y-z Cartesian
coordinate system a region

0<x<a, 0=<y=b, —h/2<z<h/2 (1)
The plateis loaded on surface z = —h /2 by alateralload of intensity
q(x, y) acting in the z direction. The plate can have any meaningful
boundary conditions at edges x =0, a and y =0, b. The modulus
of elasticity E, shear modulus G, and Poisson’s ratio u of the plate
material are related by G = E /[2(1 + w)].

Assumptions for the Refined Plate Theory

The following are the assumption involved for the refined plate
theory (RPT):

1) The displacements are small and, therefore, strains involved
are infinitesimal.

2) The lateraldisplacementw has two components: bending com-
ponent w,, and shear component w,. Both the components are func-
tions of coordinates x and y only.

3) In general, transverse normal stress o, is negligible in com-
parison with in-plane stresses o, and o,. Therefore, for a linearly
elastic isotropic material, stresses o, and o, are related to strains €,
and €, by the following constitutive relations:

o, =[E/(1 = p))l(e +pey), oy =[E/1—ud)](e, + pe,)

4) The displacement # in x direction and displacement v in y
direction each consists of two components.

a) The bending component u;, of displacement « and v, of dis-
placement v are assumed to be analogous, respectively, to the dis-
placements u and v given by the CPT. Therefore, the expression for
u, and v, can be given as

8wb 8wb
U, = ——m—, vy = — T/
b 0x b ay

Note that the displacement components u;, v, and w, together do
not contribute toward shear stresses 7, and ..

b) The shear componentu, of displacementu and the shear com-
ponent v, of displacementv are such that they give rise, in conjunc-
tion with wy, to the parabolic variations of shear stresses 7, and 7,
across the cross section of the plate in such a way that shear stresses
7., and 7y, arezeroatz = —h /2 and at z = h /2 and their contribution
toward strains €,, €,, and y,, is such that in the moments M., M,,
and M., there is no contribution from the components u, and vy.

5) Body forces are assumed to be zero (body forces can be treated
as external forces without much loss of accuracy).

Displacements, Strains, Stresses, Moments,
and Shear Forces in RPT
Expressions for displacements, etc., associated with the RPT will
now be obtained.

Expressions for Displacements in RPT
Based on the assumptions made in the preceding section, it is
possible, with some effort, to write

3
dwy
) } e )

w = w, + w, 4)

Expressions for Strains in RPT
Expressions (2-4) can be used to obtain expressions for normal
strains €,, €,, and €, and shear strains yx,, ¥,., and y... The expres-

sions for the strains are
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Expressions for Stresses in RPT

Using strain expressions(5) and (6) in constitutiverelations for o,
ando,, as givenin the assumption3 in the precedingsection,one gets
expressions for stresses o, and o,. Using shear strain expressions
(8-10) and constitutive equations for shear stress and shear strains
thatis, 7., = Gy, T,. = Gy, and 7., = Gy.,, one gets expressions
for 1,,, 7,,, and 7,,. These expressions are
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The expressionsobtainedfor stresses will be utilized for obtaining
expressions for moments and shear forces.

Expressions for Moments and Shear Forces in RPT
The moments M, M,, and M,, and shear forces Q, and Q, are
defined as

M, 0.2
M, z=h/2 | Oy<
M,, :/ T2 g dz (16)
0. =,
o, Ty

Using expressions (11-15) in Eq. (16), one gets expressions for
moments M., M, and M,, and shear forces Q, and Q, as follows:

82wb 82wb
M,=-D 17
( oz TR e a7
82wb 82wb
M,=-D 1
’ ( dy? T (18)
82wb
M, =-D1 - 19
) (1= oxdy (19)
S5Eh  Qw;
Oy =———— (20)
12(1 + p) ox
S5Eh  Qw;
0, =—_" 1)
12(1 + p) dy
where the plate rigidity D is defined by
Eh?
= — (22)
12 (1 - p2)

Note that expressions for moments M., M,, and M., contain only
w,, as an unknown function. Also, the expres%lon% for shear forces
0, and Q, contain only w, as an unknown function.

Total Potential Energy in RPT

Note that transverse normal strain €, given by expression (7) is
identically zero. The total potential energy 7 for the plate is given

Z=h/2
/ / / [ovec + Oy€y + TxyVxy + TyzVyz
—n)2

+ 7,V ldedydz — / qlw, + wy]dxdy (23)
y=0

Using Egs. (5), (6), and (8-15) in Eq. (23), one can write
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Governing Equations in RPT
Minimizing the total potential energy given by expression (24)
with respectto w;, and w; yields the governingequationsand bound-
ary conditions. The governing equations of the plate are given by

v:viw, =¢q/D (25)
H(v*vw) =[50 — w/h)(v?w,) =q/D  (26)
where
2 2
v = 0 0 (27

e

Boundary Conditions in RPT

Minimizing the total potential energy given by the expression
(24) with respect to w,, and w; also yields boundary conditions.

The boundary conditions for the plate are given as follows.

1) At corners (x =0, y=0), (x =0, y=»b), (x =a, y=0), and
(x =a, y=">) the following conditions hold: a) the condition in-
volving w;, (bending component of lateral displacement)

82wb

—D|{—w =0 or w, is specified (28)
0xdy

and b) the condition involving w; (bending component of lateral
displacement)

-[a

2) On edges x =0 and a, the following conditions hold: a) the
conditions involving w, (bending component of lateral displace-
ment)

3 3
—D[a Yo 4 g ) }:0 or

02w,
Yl = 0 or w; is specified 29)
0xdy

P 35977 w, is specified (30)
X xdy

02 92 0
—D|: 8;}’ "w 8;b1| =0 or % is specified (31)

and b) the conditions involving w; (shear component of lateral dis-
placement)

420(1 — ) D dwy 3w, 93w
S _D — =
B ox [ o 2Ty

or w; is specified  (32)
82w, 82w,
-D e +M8y2 =0 or

3) On edges y =0 and b, the following conditions hold: a) the
conditions involving w, (bending component of lateral displace-
ment)

dwy . .
— is specified (33)
ax

93 A
_p| L% 2=p e or wy, is specified
oy3 0x20y

(34)

_D|:82w,, 82wb

0
I =0 or el is specified (35)
0y? 0x2 ay
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and b) the conditions involving w, (bending component of lateral
displacement)

420(1 — w)D dw; 3w, 3w,
204 Zwbdw, 1 0wy e
h? oy ay? 0x20y

or w; is specified (36)

92w, 92w,
—D|: oy +u8x21|=0 or

Comments on Equations of RPT

1) In RPT, there are two governing equations that are two uncou-
pled fourth-order partial diffferential equations, that is, Eqs. (25)
and (26).

2) With respect to boundary conditions, note the following:

a) In RPT, there are four boundary conditions per edge. Out of
these, two conditions [e.g., in case of edge x =0, conditions (30)
and (31)] are stated in terms of w, and its derivatives only. The
remaining two conditions [e.g., in case of edge x =0, conditions
(32) and (33)] are stated in terms of w, and its derivatives only.

b) In RPT, there are two conditions per corner. One condition
[i.e., condition (28)] is stated in terms of w,, and its derivativesonly.
The remaining condition [i.e., condition (29)] is stated in terms of
w; and its derivatives only.

3) The following entities of RPT are identical, save for the ap-
pearance of a subscript, to the correspondingentities of CPT: a) gov-
erning equation (25); b) edge boundary conditions (30), (31), (34),
and (35)]; c¢) corner boundary condition (28); and d) moment ex-
pressions for M,, My, and M,,, that is, expressions (17-19). (The
bending component w,, of lateral displacement figures in the just
mentioned equations/expressions of RPT, whereas lateral displace-
ment w figures in the corresponding equations/expressions of the
CPT.)

4) Because in the differentialequations the only differential oper-
ator occurring is the invariant operator V72, it indicates that explicit
solutions of the theory may also be found in terms of plane polar
and elliptical coordinates.

5) The governing equations of RPT are somewhat analogous to
those obtained by Green (these equations are quoted on pages 168
170 of Ref. 10). However, because of strong similarity to CPT,
RPT equations are easy to deal with. Moreover, Green’s equations
are based on Reissner’s approach' and, therefore, the transverse
shear stresses and shear strains do not exactly satisfy the constitutive
relations. In RPT, these constitutive relations are exactly satisfied.

ow;
T s specified (37)
ay

Variants of RPT

The RPT results in two fourth-order partial differentialequations
(25) and (26) and boundary conditions (28-37). It is possible to
introduce simplification and yet retain very good accuracy. Two
variants of the theory will be presented.

1) In RPT-Variant I variational consistency will be adhered to,
but a simplified expression for total potential energy will be used
after ignoring terms of marginal utility. The resulting governing
equations can be considered to be analogous to those of Mindlin’s
theory.? It will be observed that one of the governing equations has
striking similarity to that of the CPT.

2) In RPT-Variant Il instead of using a variational approach, gross
equilibriumequationsof the plate will be satisfied. The approachcan
be consideredto be an improvementover Ref. 7. It will be observed
that the resulting governing equation, as well as expressions for
moments and shear forces, have striking similarity to those of the
CPT.

RPT-Variant I

As per assumptions4a and 4b given earlier and also from expres-
sions for M, M,, M,,, Q., and Q,, that is, expressions (17-21),
the following can be noted:

1) The displacement components u;, v,, and w, together con-
tribute only toward o,, oy, and t,,, but do not contribute toward
shear stresses 7., and ..

2) The shear componentu; of displacementu and the shear com-
ponent v, of displacement v are such that a) they give rise, in con-
junction with wy, to the parabolic variations of shear stresses 7,
and 7, across the cross section of the plate and b) their contribution
toward strains €, €,, and y,, is such that in the moments M,, M,
and M,, there is no contribution from the components u,; and v,.

3) As a result, a) in expressions for moments M., M,, and M.,
that is, expressions (17-19), there are terms associated with com-
ponent w,, of lateral displacement, but there are no terms associated
with component w, and b) in expressions for shear forces Q, and
0,, that is, expressions (20) and (21), there are terms associated
with component w, of lateral displacement, but there are no terms
associated with component w,.

In view of this, it is possibleto identify terms of marginal utility in
expression(24) for total potentialenergy. For example,in expression
(5) for strain €,, there is a term —z(d%wj/9x?) associated with w,
and there is a term

ARYE: s(z\ | ow,

4\ h 3\ h 0x?

associated with w,. In the similar manner, in expression (11) for
stress o, there is a term

_ Ez 82w;, 82w;,
- | o My

associated with wj, and there is a term

3
Eh 1(z 5(z 32w; 4 32w;
- |a\n) 3\& x> H oy
associated with w,. The terms associated with w, do not enter into
the expressions of moments M., M,, and M,,. Therefore, in the
productof o, ande,, the productofterms containingw, can be safely
ignored because the product is of two small insignificant entities.
Similar arguments can be advanced in case of the the productof o,
and €,, as well as in the product of 7., and yy,.

Therefore, the expression for total potential energy can be ex-
pressed with good accuracy as follows:

ER />’=”/*=“ 12w, ) 10w,
T~ — —_ + -
20— ),y Sy |2\ 002 2\ T9y2

9w, 9 2w, \’
+Mﬂ wh-i—(l—u)( w;,) dx dy

9ax2 9y? dxdy
SEh y=ber=at Caw Y 1 dw, )
+— =) +=(=—=) |dxdy
1204+ J,_p Jooo |2\ 0x 2\ oy
y=b px=a
—/ / qlwy, +ws]dx dy (38)
y=0 Jx=0

Displacements, Strains, Stresses, Moments, and Shear Forces in
RPT-Variant 1

The expressions for displacements, strains, stresses, moments,
and shear forces in RPT-Variant I are the same as those of the cor-
responding entities in RPT.

Governing Equations in RPT-Variant [

Minimizing the total potential energy given by the expression
(38) with respect to w;, and w; yields the governing equations and
boundary conditions. The governingequationsof the plate are given
by

vviw, =q/D (39)

viw, = —[h*/5(1 = 1)1(q/D) (40)
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Boundary Conditions in RPT-Variant |

Minimizing the total potential energy given by expression (38)
with respect to w;, and w, not only yields the governing equations
but also yields the boundary conditions.

The boundary conditions of the plate are given as follows.

1) At corners (x =0, y=0), (x =0, y=0), (x=a, y=0), and
(x =a, y =>b), the following holds:

4o
—D| (1 —np) =0 or

wy is specified 41)
dxdy

2) On edges x =0 and a, the following conditions hold: a) the
conditions involving w, (bending component of lateral displace-
ment)

83 Wy 83 wy . .
-D — +@2-p I =0 or w,isspecified (42)

_D|:82w,, 82w;,

0
W I 5y i|=0 or % is specified (43)

and b) the condition involving w;, (shear component of lateral dis-
placement)

dwy

“ax

3) On edges y =0 and b, the following conditions hold: a) the

conditions involving w, (bending component of lateral displace-
ment)

=0 or wy is specified (44)

D 83w},+(2 ) 83w;,
oy3 H 0x20y

82w;, 82w;,
-D + =0 or
[ oyr M ox2
and b) the condition involving w; (shear component of lateral dis-
placement)

i| =0 or wy is specified (45)

0
20 is specified (46)
ay

ow, _ or

w; is specified @7
ay

Comments on Equations of RPT-Variant |

1) In RPT-VariantI, there are two governing equations, which are
two uncoupled fourth-order partial diffferential equations, that is,
Eqgs. (39) and (40).

2) With respect to boundary conditions, note the following:

a) In RPT-VariantI there are three boundary conditions per edge.
Out of these, two conditions [e.g., in case of edge x =0, condi-
tions (42) and (43)] are stated in terms of w, and its derivatives
only. The remaining condition [e.g., in case of edge x =0, condi-
tion (44)] is stated in terms of w, and its derivatives only.

b) In RPT-Variant I, there is one condition [i.e., condition (41)]
per corner, and it is stated in terms of w), and its derivatives only.

3) The following entities of RPT-Variant I are identical, save for
the appearance of a subscript, to the correspondingentities of CPT:
a) governing equation (39); b) edge boundary conditions (42), (43),
(45), and (46); ¢) corner boundary condition (41); and d) moment
expressions for M., M,, and M,, [i.e., expressions (17-19)]. (The
bending component w, of lateral displacement figures in the just
mentioned equations/expressions of RPT-Variant I, whereas lateral
displacement w figures in the correspondingequations/expressions
of the CPT.)

4) Because in the differentialequations the only differential oper-
ator occurring is the invariant operator /2, it indicates that explicit
solutions of the theory may also be found in terms of plane polar
and elliptical coordinates.

5) The governing equations of RPT-Variant I are somewhat anal-
ogous to those obtained Reissner’s theory! and Mindlin’s theory.2
Howevere, because of strong similarity to the CPT, RPT equations
are easy to deal with. Moreover, in Mindlin’s approach® and Reiss-
ner’s approach,! the transverse shear stresses and shear strains do
not exactly satisfy the constitutiverelations. In RPT-VariantI, these
constitutiverelations are exactly satisfied.
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RPT-Variant II

As noted earlier, analysis involving higher-order effects such as
shear effects is an involved and tedious process. The motivation
behind RPT-Variant II is to obtain a theory that is simple to deal
with. The simplification is achieved by taking the displacementex-
pressions of RPT and obtaining governing equations by using the
relationships (which always hold whatever may be the plate the-
ory used) between moments, shear forces, and loading on the plate.
However, the price to be paid for is that the theory becomes varia-
tionally inconsistent.

RPT-Variant II can be considered to be an improvement on the
earlier zeroth-order shear deformation theory (ZSDT) for plates.7
ZSDT for platesis strikingly similar to the CPT and is much simpler
than even the first-order shear deformation theories, and the term
zeroth-orderis meant to convey this.

Importantamong earlier attempts to obtain fourth-orderdifferen-
tial equation for plates and yet take into account shear deformation
are Librescu’s approach? and the present author’s ZSDT approach

Librescu’s approach* makes use of weightedlateral displacement,
whereas, the RPT-Variant II approach uses the lateral displacement
(which has bending and shear components) and, therefore, the RPT-
VariantII approachis physically more meaningful. Also, in contrast
to Librescu’s approach, the RPT-Variant II approach utilizes, from
the formulation stage, only physically meaningful entities, for ex-
ample, lateral deflection and shear forces.

The main differences between RPT-Variant II and ZSDT can be
stated as follows: Unlike ZSDT, in RPT-Variant II the lateral dis-
placement has components, namely, bending component and shear
component. In RPT-Variant II, the net contributionto moments M,,
My, and M,, from the shear components of axial and lateral dis-
placements together is zero. Note the following important features
about RPT-Variant II:

1) The single most distinguishing feature of RPT-Variant II is
that, unlike any other RPT, the governing differential equation as
well as the expressions for moments and shear forces associated
with RPT-Variant II are identical to those associated with the CPT,
except instead of the term for lateral displacement appearing in the
equation and expressions of the CPT the term representingbending
component of the lateral displacement appears in RPT-Variant II.

2) Also, for RPT-Variant II, as well as for ZSDT, only physically
meaningfulentities, for example, lateral deflection and shear forces,
are involved in the description of displacement fields.

Assumptions for RPT-Variant Il

For RPT-Variant II, all of the assumptions stated earlier, except
assumption4b, are valid. For RPT-Variant II, assumption 4b can be
worded as follows: The shear component u, of displacement u and
the shear component v, of displacement v are such that they give
rise, in conjunction with w;, to the parabolic variations of shear
stresses 7., and T, across the cross-section of the plate in such a

way that the shear stresses 7., and 7, are zero at z =—h/2 and at
z="h/2 and shear stresses 7., and 7, satisfy the following:
2=h/2 =h/2
/ Tox dZ = Qx» / Tyz dZ = Qy
2=—h/2 2=—h/2

The contribution of #, and v, toward strains €,, €,, and y,, is such
that in the moments M, M,, and M,, there is no contributionfrom
the components u, and vy.

Equilibrium Equations for the Plate in Terms of Moments, Shear Forces,
and Loading

In RPT-VariantII, instead of using energy principles, use will be
made of equlibrium equations for the plate in terms of moments,
shear forces, and loading.

From the theory of elasticity point of view, the equilibriumequa-
tions to be satisfied are

do, 0T,  IT.

0x ay 0z

—0 0Ty, n doy n ity 0
- ax 9y 09z

0T | 0Ty, | do,
ax ay 9z
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In the preceding equilibrium equations, body forces are assumed
to be zero. Body forces can be treated as external forces without
much loss of accuracy. It is almost an impossible task to satisfy the
equilibrium equations identically. However, from these equations,
gross equilibrium equations can be obtained. For this the first two
of the equilibrium equations need to be multiplied by z and then
need to be integrated with respect to z noting that shear stresses 7,
and 7, are zero at z =h /2 and —h/2. The third of the equilibrium
equations needs to be integrated with respect to z and noting that
stresso,, =0atz=h/2ando,, = —q atz = — h /2. This will result
in the following equations:

oM, oM,

—+t—-0,=0 (48)
0x ay

oM, oM,

—2 2 0.=0 49
dx dy 2, “9)
00, 040,

0x ay

Equations (48-50) can be construed to be the gross equilibrium
equations for any plate whether thin or thick. These equations es-
tablish certain relationships between moments, shear forces, and
loading. As such, in the context of the CPT, Egs. (48-50) are well-
knownrelations.!” (Care needsto be taken and the notationof Ref. 10
needs to be followed when interpreting the correspondingequations
given therein on page 81.) Note that the equations hold good for any
plate theory including any higher-order plate theory.

Displacements in RPT-Variant I1
Using expressions (17-22) in Egs. (48) and (49), one obtains

ow, k9 82wb+82wb
ax  5(1—p)ax \ ax? ay?

dw, h? 9 [ 0%w, 4 92w,
dy  SA—way\ ax2 92
From the preceding two equations, one can conclude that

I’l2 82 82
e ( e N w”) (51)

5(1—p) \ 0x2 ay?

Expression(51) canbe written in another formusing Egs. (17), (18),
and (22):

w, = (12/5Eh)[M, + M,] (52)

Equation (52) establishes the relation between w, and w,.
Using expression (51) in expressions (20) and (21), one gets ex-
pressions for O, and Q, as follows:

0 82wb 82wb
=-D
0 8x( dx2 * ay? (53)
0 82wb 82wb
 =-D— 4
0, =-p(fu Lt 54)

Using Egs. (51-54) in Eqs. (2-4), one can write expressions for
displacements u, v, and w.
The expressionsfor displacementsu, v, and w can then be written

3
_ ow, 2(14+p) z
u——Za—x+T|:10( )—2(E>:|Qx (55)
3
2(1
V= —z Bau;b +%|:10( )—2(%) :|Qy (56)

12
w = w;,—i—sﬂ[M + M,] (57)

as

Note that, in RPT-Variant 11, the displacements u, v, and w are
expressed in terms of shear forces, bending moments, and bend-
ing component of lateral displacement, all physically meaningful
entities.

Strains and Stresses in RPT-Variant 11
Expressions (55-57) can be used for obtaining expressions for

normal strains €,, €,, and €, and shear strain y,,. The expressions
for the strains are

w20+ 3 (2 2\ |a0.

= 0x2 + E |:1_0(E> _2(E> :| ax (58)
w20+ 3 (2 2\ a0,

€, =—2 2y2 + T|:1_0 (E) - 2(E> a—y (59)

e,.=0 (60)

wy,  2(1+u)
Xy — _2 T + - -
Va Z8)68y E 10

3
z 00, 00,
—2(;) :|(8_x + 3y ) (61)

2(1 +M)|:

Vyz

:| 0, (62)

2(1 +M) |:
Vex

e

Using expressions (58) and (59) in constitutive relations for o,
and o, as given in assumption 3 earlier, one gets expressions for
stresses o, and o,,. Also, using expressions (61-63) and constitu-
tive equations for shear stress and shear strains, that is, 7., = Gy,,,
7y, = Gy,., and 1,, = Gy,,, one gets expressions for 7.y, 7,., and
7,,. These expressions are

Ez 82wb + 82wb
o, = —
a—m\ox2 1y

2 3(z 00, 00,
oo [To(ﬁ) _2(E> }( ox “a_y> (64

3
00,  ,99:
(1—,@[ E)}(a_er“ 8x> (65

3
\'(2e. , 20,
—2(z> }(H_ﬁ <) (66)

(67)

2
z
-6 E) :|Qx (68)

=~
|
> —
1
N W
|
[e))
— — N——
ol P
N——
[\v]
|
©
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Moments and Shear Forces in RPT-Variant Il
Using expressions (64-66) in Eq. (16), one gets expressions for
moments M,, M, and M,, as follows:

82w;, 82w;,

M, = —D( P +pn 5 (69)
82w;, 82w;,

M, = —D( 7y + (70)
82w;,

My, = —D(1 — ) (71)

0xdy

The expressions for moments in RPT-Variant II are same as those
obtained for RPT earlier.

Expressions for O, and Q, have already been obtained in
Eqgs. (53) and (53) and are as follows:

0 82w;, 82w;,
=-DZ 72
Q 8x( ox?2 * 9y? 72
0 82w;, 82w;,
, = —D— 73
0, ay( et 5 (73)

Note that expressions for moments M,, M,, and M,, and shear
forces Q, and Q, contain only w, as an unknown function.
Using expressions (68) and (67) one observes that

z=h/2 z=h/2 2
1{3
/ rzxdz=/ - ——6(£> 0,=0, (74
= —h2 o aph|2 h

= z

z=h/2 z=h/2 2
113 z
r,zdz=/ - ——6(—) 0,=0, (75
/::—h/Z ’ z:—h/Zh[z h ’ ’

z

Equations (74) and (75) are in tune with the amended assumption
4b mentioned in the present section.

Governing Equations in RPT-Variant I1

Equilibrium equations (48-50) have been obtained earlier. Of
these equations, Eqs. (48) and (49) were utilized to obtain expres-
sions for displacements in RPT-Variant II.

Now, using shear force expressions (72) and (73) in equlibrium
equation (50), one obtains

v:viw, = q/D (76)

Equation (76) can be considered to be the governing equation of
the plate. Governing equation (76) is strikingly similar to that of the
CPT. The only difference is that in Eq. (76) derivatives of w, are
involved, whereas in the governingequation of the CPT, derivatives
of w are involved.

Using expressions(4) and (51), the lateral displacementw can be
expressedin terms of its bending component w,, as follows:

w=w, — [h*/5(1 — w1 v w, 7

Boundary Conditions in RPT-Variant I1

Some typical boundary conditions will now be discussed for the
edge x = a. Boundary conditions for other edges will follow a sim-
ilar pattern.

Note that the lateral displacementw, moments M., M, and M,,,
and shear forces Q, and Q, are all explicitly expressed in terms of
the bending component w;, of lateral displacement by expressions
(77), (69), (70), (71), (72), and (73), respectively.

If edge x =a is simply supported, then the following conditions
hold:

[w]x=a = 0» [Mx]xza =0
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If edge x = a is free, then the following conditions hold:

oM.,

Mx x=a — 0,
[M,] 2y

If edge x =a is clamped, then two types of boundary conditions
analogous to those discussed by Timoshenko and Goodier'' in the
context of two-dimensional theory of elasticity approach for beam
analysis are feasible. In both types, displacement w is zero at the
edge x =0. In one type, slope dw/dx is zero, whereas in the other
type, slope [du /2], — is zero at the edge. (This results in the spec-
ification of the derivative dw,/dx at the edge.) The boundary con-

ditions are either
a
|:_wi| =0
0x i

[w]x=a =0

ow, __3(1+u) a 82wh+82wh
ox | . Eh [ox\ ox>  ax> )|

[wli—a = 0,

or

=a

Comments on Equations of RPT-Variant 11

Unlike any other refined plate theory, the governing differential
equation as well as the expressions for moments and shear forces
associated with RPT-Variant I are identical to those associated with
the CPT except that instead of the term for lateral displacementap-
pearing in the equation and expressions of the CPT the term repre-
senting the bending component of the lateral displacement appears
in RPT-Variant II. The governing equation is a fourth-order ordi-
nary differential equation. The bending component of the lateral
deflection is the only unknown function.

Because in the differentialequation the only differential operator
occurring is the invariant operator V72, it indicates that explicit so-
lutions of the theory may also be found in terms of plane polar and
elliptical coordinates.

Example

An example is given to demonstrate the usefulness of RPT, RPT-
Variant I, and RPT-Variant II; the results will be compared with
other theories.

Consider a plate (of length a, width b, and thickness %) of a
homogeneous isotropic material. The plate occupiesin O—x—y—z
Cartesian coordinate system a region defined by expressions (1).
The plate has simply supportedboundary conditionsat edges x =0,
a andy =0, b. The plate is loaded on surface z = — 1 /2 by a lateral
load of intensity g (x) acting in the z direction given by

q(x) = q, sin(zrx /a) sin(wy/b) (78)

Solution of the Example by RPT
By using Egs. (25), (26), and (78), the governing equations for
the example problem when RPT is utilized are then obtained as

v’V w, = (¢,/D) sin(rrx/a) sin(ry /b) (79)
(72 2w,) = 150 = /1 V2 w,)
= (q,/D) sin( x /a) sin(zwy /b) (80)

The boundary conditions for the example problem when RPT is
utilized can be stated as

w, =0 on x=0,a (81)

—82w;, 82w;,_
—D_ e "w e =0 on x=0,a (82)
w, =0 on x=0,a (83)

[ 82w, 92w, |
-D T "w | =0 on x=0,a (84)
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w, =0 on y=0,b (85)
_ |: 882)11? 88;;}’ i| =0 on y=0,b (86)
w, =0 on y=0,b (87)
_D|:882;;“' + 1 882;;‘} =0 on y=0b (88

Governingequations(79) and (80) and boundary conditions(81-88)
can be easily satisfied if the solution is assumed to be a Navier-type
solution. It is easy to show that the solution of the problem, when
RPT is utilized, is given by

w = w, + w; (89)
where
wy, = (1/{[7*/12(1 = u)1(h? fa® + B? [b*)*))(q,h/ E)
x sin(7x /a) sin(wy/b) (90)

w, = (1/{[57%/12(1 + w)](h*/a* + h? /b*) + [7* /1008(1 — u?)]

x (i Ja* + h*/b*)*})(q,h/E) sin(rx /a) sin(rry /b) 1)

Once the expressions for w, w,, and wy, that is, expressions (89-
91), of the problem are obtained, the other entities such as displace-
ments, strains, stresses, moments, and shear forces can be obtained
by using appropriate expressions, that is, from expressions (2), (3),
(5), (6), (8-15), and (17-21).

Solution of the Example by RPT-Variant I

By using Egs. (39), (40), and (78), the governingequations for the
example problem when RPT-Variant I is utilized are then obtained
as

v’V w, = (q,/D) sin(rwx /a) sin(rry /b) (92)
viw, =—[h*/5(1 — w)1(q,/D) sin(zrx /a) sin(wy/b) (93)

The boundary conditions for the example problem when RPT-
Variant [ is utilized can be stated as

w, =0 on x=0,a (94)

82wb 82wb
—D|: PP +u 52 =0 on x=0,a (95)
w, =0 on x=0,a (96)
w, =0 on y=0,b 97)

5 9
—D|: ol wb}=0 on  y=0,b (98)

w, =0 on y=0,b (99)
Governingequations(92) and (93) and boundary conditions(94-99)
can be easily satisfied if the solution is assumed to be a Navier-type
solution. It is easy to show the solution of the problem when RPT
is utilized is given by

w = w, + w, (100)
where
wp = ! MsinﬂeinH
DTt 12(1 — @)k Ja? + h2JB22 E  a b
(101)
1 qgh . wx . wy

U T B2+ iR+ ) E S a

Once the expressions for w, wy, and wy, that is, expressions (100-
102), of the problemare obtained, the otherentities such as displace-
ments, strains, stresses, moments, and shear forces can be obtained
by using appropriate expressions, that is, from expressions(2), (3),
(5), (6), (8-15), and (17-21).

Solution of the Example by RPT-Variant II
By using Egs. (76) and (78), the governing equation for the ex-
ample problem when RPT-Variant Il is utilized is obtained as

vV wy, = (q,/D) sin(rrx /a) sin(rwy /b) (103)

The boudary conditions for the example problem when RPT-
Variant II is utilized can be stated as

w, =0 on x=0,a (104)

—82wb 82wb_
—D_ P "w | =0 on x=0,a (105)
w, =0 on y=0,b (106)

—82wb 82wb_
—D_ 52 "w x| =0 on y=0,b (107)

Governing equation (103) and boundary conditions (104-107) can
be easily satisfied if the solution is assumed to be a Navier-type
solution. It is easy to show that the solution of the problem, when
RPT is utilized, is given by

= ! gl sin i sin zy
W= [74/12(1 — p2)|(h?/a® + h2/b2)2 E ~ a = b
(108)

When expressions (108) and (77) are used, lateral displacement w
can be written as

_ 12(1 — p?) | m2[(h/a)* + (h/b)*]
~ *[(h/a)? + (h/b)*]2 51— p)
qh . mx | mwy
X ?sm7 sm7 (109)

Once the expressions for w and w,, that is, expressions (109) and
(108), of the problem are obtained, the other entities such as dis-
placements, strains, stresses, moments, and shear forces can be
obtained by using appropriate expressions, that is, from expres-
sions (55), (56), (59), and (61-73).

Numerical Results
To obtain the numerical results, in the example the following is
assumed:

a=1, b=1, h=0.1, n=03

The exact results for the problem under consideration are avail-
able in Ref. 12, and details of the exact theory are givenin Ref. 13.
The results for the problem under consideration using ZSDT for
plates are available in Ref. 7.

Comparisonofresults by differenttheories with respectto central
deflection, maximum tensile flexural stress, and maximum shear

stress is presented in Tables 1-3.

Table1l Comparison of results for central deflection

Error with respect

Theory Central deflection® to exact theory, %
RPT 296.0568 g,h/E 0.6183
RPT-Variant I 296.0674 q,h/E 0.6219
RPT-Variant I 296.0674 q,h/E 0.6219
ZSDT for plate 296.0674 g,h/E 0.6219
CPT 280.2613 g,h/E —4.7500
Exact plate theory 294.2375q,h/E 0.0

AThat is, w at x =0.5 and y =0.5.
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Table2 Comparison of results for maximum
tensile flexural stress o

Maximum tensile Error with respect

Theory flexural stress o, ? to exact theory, %
RPT 19.94322 ¢, —0.5041
RPT-Variant I 19.94334 ¢, —0.5035
RPT-Variant I 19.94334 ¢, —0.5035
ZSDT for plate 19.94334 ¢, —0.5035
CPT 19.75763 q, —1.4300
Exact plate theory 20.04426 g, 0.0

2Atx =0.5, y=0.5, and z=0.05.

Table 3 Comparison of results for maximum
shear stress 7z, at midpoint of edge x =0

Maximum shear Difference with

stress 7., at midpoint respect to RPT
Theory of edge x =0 results, %
RPT 2.385722¢, 0.0
RPT-Variant I 2.387324 ¢, 0.0671
RPT-Variant I 2.387324 ¢, 0.0671
ZSDT for plate 2.387324 ¢, 0.0671
CPT 2.387324 ¢, 0.0671

Exact plate theory Not quoted —_

AThat is, at x =0, y =0.5, and z =0.

The following can be noted about the numerical results:

1) For central deflection, it can be seen from Table 1 that a) the
results from variationally consistent RPT are very accurate (er-
ror 0.6183%); b) the results using variationally consistent RPT-
Variant I, as well as variationally inconsistent RPT-Variant II and
ZSDT for plates are all identical and are also very accurate (er-
ror 0.6219%); and c) in accuracy, results obtained using RPT are
superior (by a very slender margin) to the results obtained by RPT-
Variant I, as well as variationally inconsistent RPT-Variant II and
ZSDT for plates.

2) For maximum tensile flexural stress, it can be seen from Table 2
that a) the results from variationally consistent RPT are very accu-
rate (error —0.5041%); b) the results using variationally consistent
RPT-Variant I as well as variationally inconsistent RPT-Variant I1
and ZSDT for plates are all identical and are also very accurate
(error —0.5035%); and c) in accuracy, in contrast to the preced-
ing observation for the central deflection, the results obtained by
RPT-Variant I, as well as variationally inconsistent RPT-Variant II
and ZSDT for plates, are superior (by a very slender margin) to the
results obtained by RPT.

3) For maximum transverse shear stress, the results are given in
Table 3. In this connection, note the following points: a) the re-
sults from the exact theory are not available; b) the results for the
CPT are quoted in Table 3. Note that in the case of CPT transverse
shear stresses cannot be obtained by using shear stress to shear
strain constitutive relations, and these are required to be obtained
in a circuitous manner. In CPT, first stresses oy, o0y, and 7, are ob-
tained. These stresses are substituted in the equilibrium equations
of the three-dimensional theory of elasticity, and then integrating
the equations and finding the constants of integrations, one obtains
the expressions for transverse shear stresses 7,, and 7. In contrast
with the CPT, the transverse shear stresses can be obtained directly
by the use of shear stress to shear strain constitutive relations, when
RPT and its variants are used; ¢) note that while studying exact solu-
tions of rectangular bidirectional composites and sandwich plates,
Pagano'* mentions (page 29 of Ref. 14) that “Although CPT appre-
ciably underestimatesthe maximum deflection at relatively small S,
the stress field given by the CPT is in very favorable agreement with
that given by elasticity theory.” In the preceding quote, S denotes
span to depth ratio of a square plate; and d) results of variationally
consistent RPT-Variant I, as well as results of variationally incon-
sistent RPT-VariantII and ZSDT for plates, are identical and hardly
differ (difference of 0.0671%) with respect to the result of RPT,
and in view of the remark by Pagano,'* just quoted, the results are
believed to be accurate.
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From the discussionaboutthe numericalresults, there are surprise
findings.

1) The results given by RPT-Variant I and RPT-Variant II are
identical. This is despite the following differences: a) RPT-Variant [
is a variationally consistent theory, whereas RPT-Variant II is vari-
ationally inconsistent;b) in RPT-Variant I, there are two governing
differential equations (one is of fourth order, and the other one is of
second order), whereas in RPT-Variant II, there is only one differen-
tial equation of fourth order; and c¢) in RPT-Variant I, there are three
boundary conditions per edge, whereas in RPT-Variant I1, there are
only two boundary conditions per edge.

2) Results for in-plane stress o, given by RPT-Variant II is su-
perior to the corresponding results given by RPT. This is despite
the following differences: a) RPT is a variationally consistent the-
ory, whereas RPT-Variant Il is variationally inconsistent; b) in RPT,
there are two governingdifferentialequations (both of fourth order),
whereas in RPT-Variant 11, there is only one differential equation
of fourth order; and ¢) in RPT, there are four boundary conditions
per edge, whereas in RPT-Variant II, there are only two boundary
conditions per edge.

The precedingsurprising findings lend supportto the doubts, first
raised by Levinson,” about the so-called superiority of variation-
ally consistent methods. He was perplexed that results obtained by
a variationally consistent theory were not superior to the results
obtained by another variationally inconsistent theory, even though
both the theories shared same kinematic and stress assumptions.
On page 129 of Ref. 9, Levinson remarks, “It then may become
necessary to evaluate the worth of an approximate theory by its
performance over a spectrum of criteria rather than the single crite-
rion of (variational) consistency.” The numerical example studied,
therefore, not only brings out the effectiveness of the theories pre-
sented, but also, albeit unintentionally, supports the doubts about
the so-called superiority of variationally consistent methods.

Conclusions

In the paper, simple and easy to use RPT and its variants RPT-
Variantl and RPT-VariantII are presented.The RPT is a variationally
consistent theory. Equations of the theory are analogous to those
obtainedby Green following Reissner’s approach,' butdue to strong
similarity with the CPT, the RPT presentedis easierto use. The RPT-
Variant I is a variationally consistent theory and is simpler than the
RPT. The governing equations are analogous to those obtained by
Mindlin? and Reissner,' but due to strong similarity with the CPT,
the RPT-Variantlis easiertouse. The RPT-VariantIl unlike RPT and
RPT-Variantl, is a variationallyinconsistenttheory. It is the simplest
amongst the theories presented here. In fact, efforts involved in
getting the solutions using this theory are only marginally higher
than the efforts involved in CPT. It is capable of dealing with two
types of clamped end conditions (this has similarity to the two types
of clamped end conditions involved in the two-dimensional theory
of elasticity approach for beam analysis). The most striking feature
is that, unlike any other refined plate theory, the governing equation
as well as the expressions for moments and shear forces associated
with the RPT-Variant II are identical to those associated with the
CPT, save for the appearance of a subscript.

For the theories presented the following can be said about them
in common:

1) The theories have strong similarity with the CPT, with respect
to appearances and forms of some equations and expressions.

2) The transverse shear stresses and shear strains satisfy the con-
stitutive relations at all of the points.

3) Transverse shear stresses satisfy zero shear stress conditions
at the top and bottom surfaces of the plate.

4) Unlike Mindlin’s theory,2 there is no need of shear coefficient.

5) The bending stresses have nonlinear components.

6) The CPT comes out as a special case of the formulations.
Therefore, in the context of finite element solution of thin plate
problems, finite elements based on the theories will be free from
shear locking.

7) The theoriesare easy to use. (In fact, the effortsinvolvedin get-
ting the solution by the RPT-VariantII approachare only marginally
higher than the efforts involved in CPT.)
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8) The effectiveness of the theories is demonstrated through an
example. Results obtained are accurate. (The numerical results ob-
tained in the case of square plate, even when thickness-to-sideratio
is 0.1, are marginally differentfrom those obtained using exact the-
ory.)

9) Surprisingly, the answers obtained by both the variants of
the theory, one of which is variationally consistent and the other
inconsistent, are the same. The numerical example studied, there-
fore, not only brings out the effectiveness of the theories presented,
but also, albeit unintentionally, supports the doubts, first raised by
Levinson, about the so-called superiority of variationally consistent
methods.
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