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Abstract

Analytical formulations and solutions to the natural frequency analysis of simply supported composite and sandwich plates
hitherto not reported in the literature based on a higher-order refined theory developed by the first author and already reported in
the literature are presented. The theoretical model presented herein incorporates laminate deformations which account for the effects
of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of in-plane displacements with respect to
the thickness coordinate — thus modelling the warping of transverse cross-sections more accurately and eliminating the need for
shear correction coefficients. In addition, few higher-order theories and the first-order theory developed by other investigators and
already available in the literature are also considered for the evaluation. The equations of motion are obtained using Hamilton’s
principle. Solutions are obtained in closed form using Navier’s technique and by solving the eigenvalue equation. The comparison of
the present results with the available elasticity solutions and the results computed independently using the first-order and the other
higher-order theories available in the literature shows that this refined theory predicts the fundamental and higher frequencies more
accurately than all other theories considered in this paper. After establishing the accuracy of present results for composite plates,
new results for sandwich laminates using all the theories considered in this paper are also presented which may serve as a benchmark

for future investigations. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Laminated composite plates are being increasingly
used in the aeronautical and aerospace industry as well
as in other fields of modern technology. To use them
efficiently a good understanding of their structural and
dynamical behaviour and also an accurate knowledge of
the deformation characteristics, stress distribution, nat-
ural frequencies and buckling loads under various load
conditions are needed. The Classical Laminate Plate
Theory [1], which is an extension of Classical Plate
Theory [2,3] neglects the effects of out-of-plane strains.
The greater differences in elastic properties between fibre
filaments and matrix materials lead to a high ratio of in-
plane young’s modulus to transverse shear modulus for
most of the composite laminates developed to date.
Because of this reason the transverse shear deformations
are much pronounced for laminated plates than for
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isotropic plates. Thus the Classical Laminate Plate
Theory (CLPT) which ignores the effect of transverse
shear deformation becomes inadequate for the analysis
of multilayer composites. In general the CLPT often
underpredicts deflections and overpredicts natural fre-
quencies and buckling loads. The first-order theories
(FSDTs) based on Reissner [4] and Mindlin [5] assume
linear in-plane stresses and displacements respectively
through the laminate thickness. Since the FSDT ac-
counts for layerwise constant states of transverse shear
stress, shear correction coefficients are needed to rectify
the unrealistic variation of the shear strain/stress
through the thickness and which ultimately define the
shear strain energy. Many studies have been carried out
using FSDT for the free vibration analysis of composite
plates [6-13].

In order to overcome the limitations of FSDT,
higher-order shear deformation theories (HSDTs) that
involve higher-order terms in the Taylor’s expansions
of the displacements in the thickness coordinate were
developed. In these higher-order theories with each
additional power of the thickness coordinate an
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additional dependent unknown is introduced into the
theory. Hildebrand et al. [14] were the first to introduce
this approach to derive improved theories of plates and
shells. Nelson and Lorch [15], Librescu [16] presented
higher-order displacement based shear deformation
theories for the analysis of laminated plates. Lo et al.
[17,18] have presented a closed form solution for a
laminated plate with higher-order displacement model
which also considers the effect of transverse normal
deformation. Levinson [19] and Murthy [20] presented
third-order theories neglecting the extension/compres-
sion of transverse normal but used the equilibrium
equations of the first-order theory used by Whitney
and Pagano [8] in the analysis which are variationally
inconsistent. Kant [21] was the first to derive the
complete set of variationally consistent governing
equations for the flexure of a symmetrically laminated
plate incorporating both distortion of transverse nor-
mals and effects of transverse normal stress/strain by
utilizing the complete three-dimensional generalized
Hooke’s law and presented results for isotropic plate
only. Reddy [22] derived a set of variationally consis-
tent equilibrium equations for the kinematic models
originally proposed by Levinson and Murthy. Using
the theory of Reddy, Senthilnathan et al. [23] presented
a simplified higher-order theory by introducing a fur-
ther reduction of the functional degrees of freedom by
splitting up the transverse displacement into bending
and shear contributions. Kant et al. [24] are the first to
present a finite element formulation of a higher-order
flexure theory. This theory considers three-dimensional
Hooke’s law, incorporates the effect of transverse
normal strain in addition to transverse shear defor-
mations. Symmetric and unsymmetric composite and
sandwich plates Pandya and Kant [25-29], Kant and
Manjunatha [30,31] and Manjunatha and Kant [32]
have extended this theory and presented C° finite ele-
ment formulations and solutions for the stress analysis
of symmetric and unsymmetric laminated composite
and sandwich plates. Later Mallikarjuna [33], Malli-
karjuna and Kant [34] and Kant and Mallikarjuna
[35,36] presented a simple C* finite element formulation
and solutions using a set of higher order displacement
models for the free vibration analysis of general lami-
nated composite and sandwich plate problems. Solu-
tions of this theory for the free vibration analysis of
laminated composite and sandwich beams were pre-
sented by Kant and Gupta [37], Kant et al. [38], and
Marur and Kant [39]. Using the higher-order theory of
Reddy [22] free vibration analysis of isotropic, ortho-
tropic and laminated plates was carried out by Reddy
and Phan [40]. A mixed shear flexible finite element
based on a higher-order theory was developed by
Putcha and Reddy [41]. Vibration frequencies for an-
isotropic rectangular plates with different boundary
conditions were obtained. Noor and Burton [42] pre-

sented a complete list of references of FSDTs and
HSDTs for the static, free vibration and buckling
analysis of laminated composites. Srinivas et al. [43],
Srinivas and Rao [44] and Noor [45] presented exact
three dimensional elasticity solutions for the free vi-
bration of isotropic, orthotropic and anisotropic com-
posite laminated plates which serve as benchmark
solutions for comparison by many researchers. The
present paper deals with the analytical formulations
and solutions hitherto not reported in literature of the
refined theory already proposed by the senior author as
applied to free vibration of laminated composite and
sandwich plate problems with simply supported edge
conditions. Comparison of results with the three-
dimensional elasticity solutions available in the litera-
ture shows that this theory predicts the fundamental
and higher frequencies more accurately than all other
theories considered in this paper. After establishing the
accuracy of the present results for composite plates,
benchmark results for multilayer sandwich plates are
presented.

2. Theoretical formulation
2.1. Displacement models

In order to approximate the three-dimensional elas-
ticity problem to a two-dimensional plate problem, the
displacement components u(x,y,z,¢), v(x,y,z,¢) and
w(x,y,z,¢) at any point in the plate space are expanded
in a Taylor’s series in terms of the thickness coordinate.
The clasticity solution indicates that the transverse shear
stress vary parabolically through the plate thickness.
This requires the use of a displacement field in which the
in-plane displacements are expanded as cubic functions
of the thickness coordinate. In addition, the transverse
normal strain may vary nonlinearly through the plate
thickness. The displacement field which satisfies the
above criteria may be assumed in the form [30]:

(X, 3,2, 1) =ty (x,3,1) + 20:(x, 3, 1) + 205 (x, 3, 1) + 20, (x, 3, 1),
0(x,9,2,1) = 0, (x, 9, 1) + 20,(x, y,£) + 220" (x,y, 1) +z30;(x7y, 1),
w(x, y,z,t) = w,(x,,t) + z0.(x, y, ) +ZZW:(X,y, 0+ 20 (x,,0).
(1)
Further if the variation of transverse displacement
component w(x,y,z) in Eq. (1) is assumed constant

through the plate thickness and thus setting ¢, = 0, then
the displacement field may be expressed as [29]:

u(x,y,z) = u,(x,y) + z0.(x,») +22u(*)(x,y) +220%(x,y),

0(x,,2) = v,(x, ) + 20,(x, ) + 2’0, (x,y) + 20} (x, ),
W(xvyaz) = WO(xvy)'

2)
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The parameters u,, v, are the in-plane displacements and
w, is the transverse displacement of a point (x,y) on the
middle plane. The functions 0,, 0, are rotations of the
normal to the middle plane about y- and x-axes, re-
spectively. The parameters u;, v;, w,, 07, 0}, 0] and 0.
are the higher-order terms in the Taylor’s series expan-
sion and they represent higher-order transverse cross-
sectional deformation modes. Though the above two
theories were already reported earlier in the literature
and numerical results were presented using finite ele-
ment formulations, analytical formulations and solu-
tions are obtained for the first time in this investigation
and so the results obtained using the above two theories
are referred to as present (Model-1 and Model-2) in all
the Tables. In addition to the above, the following
higher-order theories and the first-order theory devel-
oped by other investigators and reported in the litera-
ture for the analysis of laminated composite and
sandwich plates are also considered for the evaluation.
Analytical formulations and numerical results of these
are also being presented here with a view to have all the
results on a common platform.
Model-3 [46]

u(x,y,z) = u,(x,y) +z{0x(x,y) —%‘(%)2{0x(x,y) + aav;(, H,

o522 = ) +2[00) - 3 (5) {0 + 52 |

W(xvyaz) = Wo(x7y)'

(3)
Model-4 [23]
owb 42> ow’
e, 3,2) = ol y) — 2o 22 O
053:9) = vley) - 5o - 3 D @)
w(x,»,z) = wy(x,y) +w,(x,).

Model-5 [8]

u(x7y7z) = uO(xvy) +z@x(x7y),
U(x7yvz) = Uo(xvy) +Zey(x’y)7 (5)
W(xayvz) = WO()C,_’,V)~

In this paper, the analytical formulations and solu-
tion method followed using the higher-order refined
theory (Model-1) is only presented in detail and the
same procedure is followed in obtaining the results using
other models. The geometry of a two-dimensional lam-
inated composite plate with positive set of coordinate
axes and the physical middle plane displacement terms
are shown in Fig. 1. By substitution of these displace-
ment relations into the strain-displacement equations of
the classical theory of elasticity, the following relations
are obtained.

TYPICAL
LAMINA

/

z,3 Vo
A LAMINATE %
MID-PLANE /

ZLH_I_ZLT 4 J/
L S
S

(x,y,z ) - LAMINATE REFERENCE AXES

Fig. 1. Laminate geometry with positive set of lamina/laminate ref-
erence axes, displacement components and fibre orientation.

& = & + ZKy +228* +Z3K*

&y 76y0—|—zrc}+zs —l—zrc

& = &, +ZK, —|—z 8 —|—z*;cy,
Ty = oo T ZKay +2 € —|—z3;c;y,
Ve = @) + 2Ky +zz¢y +27K,,
Ve = Oy 2Ky +22¢; +27K,,

where

(6aos 101 ) = Ou, Ov, 6u,,+avn
Exo9 Y05 Gxyo) — ox ) ay ) ay o

x0? “yo’ “xyo) T Ox ’ ay ’ ay ox )

(60, 82,) = (0-,307),

00, 90, 00, 00
xs Kyy Kzy Kyy ) = . 7772 *7 =4 L
(1 6y, 1z, 1) (ax oy Yo 6y+6x>

00 00, 20 o0,
(KX’KV7ny) - <6x?ayaay ax>

00,

o o ),
0; 00;

oz ( ox ' Oy )
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. o ow, ..  Ow; W, L, OW)
(o) = (000 S22 304 00,4 52 30, 92,

()

2.2. Constitutive equations

Each lamina in the laminate is assumed to be in a
three-dimensional stress state so that the constitutive
relation for a typical lamina L with reference to the fi-
bre-matrix coordinate axes (1 — 2 — 3) can be written as

g t Ch Cn Ci 0 0 0 t €1 t
(] Ch Cpn Cx 0 0 0 &
03 Ciz Cy C3 0 0 0 &3
T12 o 0 0 0 C44 0 0 Y12
T23 0 0 0 0 Gs O V23
T13 O 0 0 O 0 C66 “/13
(8)

where (01,07,03,T12,T23,713) are the stresses and
(e1,€2,83,712: V23, 713) are the linear strain components
referred to the lamina coordinates (1 —2 — 3) and the
C,;’s are the elastic constants or the elements of stiffness
matrix of the Lth lamina with reference to the fibre axes
(1 —=2-3). In the laminate coordinates (x,y,z) the
stress strain relations for the Lth lamina can be written
as:

Oy ‘
Oy
O—Z
Ty
Tyz
‘CXZ
L L
On O O Qu 0 0 Ex
O»n O O 0 0 &y
_ O3z O 0 0 &
B Ouw 0 O Yo [
symmetric Oss  Oss Ve
Oss Vxz
)
where (0y, 0y, 0., Ty, Tz, Trz)  are  the stresses and

(&xs &y €25 Vuys V1> Vi) are the strains with respect to the
laminate axes. O;;’s are the transformed elastic constants
or stiffness matrix with respect to the laminate axes
x,y,z. The elements of matrices [C] and [Q] are defined in
Appendices A and B.

2.3. Hamilton’s principle

Hamilton’s principle [46] can be written in analytical
form as follows:

5/[2[K—(U+ V)] dt =0, (10)

where U is the total strain energy due to deformations, V'
the potential of the external loads, K the kinetic energy
and U + V = II is the total potential energy. Substitut-
ing the appropriate energy expressions the final expres-
sion can be written as

¢ i
0= _/ l/l /(Uxégx + 0,08, + 0.0¢. + 1,07,
0 - J4 :

+ 1,207,, + 1207,.) d4d dz — /pjéw dA] dr
4

h
2

= |/ % [ ol (60 ) it dz

A

(11)
where p is the mass density of the material and p}' the
transverse load applied at the top surface of the plate.
Using Egs. (1), (6) and (7) in Eq. (11) and integrating the
resulting expression by parts, and collecting the coeffi-
cients of du,, ov,, Ow,, 00y, 60,, 00., ou’, ov:, ow:, 67,
00, 00 the following equations of motion are obtained:

ON, ON,, .. = . e
U, - -+ & :Ilu0+120x+13u2+149w
Ox oy :
ON, Ny .
5170 : E‘i‘ O =10, +129y+13170 +I40y?
0 . 0 B . B .
5 : Q +&+pjzllwo +]202+13W:+[4925

"ol Ty

oM, OM,, .. - .. e
50)( : + — — Qx = Izuo +[30x +I4u* +I59 s
Ox oy ° *
oM, oM, .. - - e
50y 6—y+ o —Qy :IZUo+I30y+I4UO+ISBy7
oS, oS h - -
80, —=+—2— N, +=(p") = L, + L0, + Ipv' + 07,
6x+6y +2(pz) 2Wo + 130, + Lyw, + 50
ON* ON}, .. .
out - ==+ 2 28, = Lii, + 1,0, + Lsii" + IO,
o ax ay o X
. ON; GN;‘y . .. " .
5170 : ay + Ox *ZSy :]31)0+146y+[500+]69y,
a * a * h2
5 * Qx + Qy

] oM+ (pt
W() ax ay Z+4(pz)

= Ly, + I,0. + Isiv’ + 1,07,
oM: M,
. X + )

80" — 30" = Lii, + I50, + Lsii* + L0,
X ax ay X o X
. oMy oM, o .
50y : E o — 3Qy =14, + ]56y +I61)0 + 179y’
os: os: n
00 =4 L 3N 4 (pt
z ax + ay z + 8 (pz )

= Lyv, + I50. + Isiv: + 107,
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and the boundary conditions are of the form:
On the edge x = constant

u() = a() or N‘( = NX7 QJ’C = 9_)( or M’C = M)m

vo=0, of Ny=N,, 0,=0, or M,=»M,,

WU = wo or QX = QXJ 02 = z or Sx = X9

u, =, or N;:N;v 9;:9_; or M;:Mv*’
v,=10, or N =N;, 0,=0 or M, =M,
wi=w or Q:=0;, 0=0 or S =8§.
(13)
On the edge y = constant
U, =i, Or va = _xy» Hx = éx or Mxy = Mxy;
v, =09, or Ny=N, 0,=0, or M,=M,,
w,=w, or 0,=0, 0.=0. or S,=3§,
w,=u, or N =N, 0;=0 or M, =M,
v,=0, or N;=N; 0 =0 or M =M,
wy=w, or 0,=0;, 0.=0. or S =35,
(14)
where the stress resultants are defined by
M, M oy
My M* NL /ZL+1 o.
oy 'V A (15)
M, 0 ~ J., o,
MXJ’ M):y Txy
0, Q;f] < [ {r}
.| = Sl 2dz (16)
Ne Ny Oy
]vy N* NL Z[41 o
NN :Z/ ay [1 2]dz (17)
z z L=1 zy z
NX,V N;y Txy

Sx S*:| NL /ZL+| { Tys }
Sl = Tz 2]dz, (18)
|:Sy Sy ; zL T}Z

and the inertias are given by

h

2
[15127133[4715:[6317 :/ p(17z7221237z4a25726) dz. (19)
_h

2

The resultants in Egs. (15)—(18) can be related to the
total strains in Eq. (6) by the following equations:

N’C 8XO
Ny €30
Ny €y
]v}* 8;0 gxyn
N V4 8ZO v
siyo
Nz* = [A] 8;0 + [A/} I
Kyy
M, Ky :
K
M, Ky v
M Ky
M Ky
M K,
(20)
8)C0
&y0
€y
8*
N Xy 8}’0 Sxyo
N; ” o
T =B1S e, p+IBly ),
M, Ky
Ky .
MXV K ny
K,
Ky
K.
Qx d)x d)y
o; ¢, b,
X _ D X + / y ,
s, [D] . [D'] .
S* K K
X Xz Yz ( 2 1 )
Qy ¢x d)y
Sl ey L
Sy Kxz Kyz
S ; Kt K;Z

where the matrices [4], [4'], (8], [8]. D], [D'], [£], [F]
are the matrices of plate stiffnesses whose elements are
defined in Appendix C.

3. Analytical solutions

Here the exact solution of Egs. (12)—(21) for cross-ply
rectangular plates are considered. Assuming that the
plate is simply supported in such a manner that normal
displacement is admissible, but the tangential displace-
ment is not, the following boundary conditions are ap-
propriate:At edges x = 0 and x = a:
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v, =0; w,=0; 0,=0; 0.=0;

M, =0; v;=0; w,=0; 0;=0; (22)
0:=0; M;=0; N,=0; N =

At edges y =0 and y = b:

u,=0; w,=0; 0,=0; 0,=0;

M,=0; u,=0; w,=0; 0. =0; (23)
0:=0; M;=0; N,=0; N =0.

Following Navier’s solution procedure [2,3,47] the so-
lution to the displacement variables satisfying the above
boundary conditions can be expressed in the following
forms:

SIS
u, = E E u,,  cosoxsin fiy e,

o0 o0 .
Uy = E E 0y, SN ox cos fy e,

o0 o0 .
W, = Z Z W,,,, Sinox sin fy e ',
m=1 n=1
0, = Z Z 0., cosaxsin fy e,
m=1 n=1
0, = Z Z 0,,, sinax cos fy e,
m=1 n=1
o0 o0 .
0, = Z Z 0., sinoxsin fy e,
m=1 n=1
o0 o]
ut = Z Z u, cosoxsinfye ", (24
m=1 n=1

o0 o0
* : —iwt
E E v, Sinoxcos fy e,
m=1
o0 o0
* * : : —iwt
w, = g E w, sinoxsin fy e,
m=1
o0 o0
* : —iwt
E E 0, cosaxsinfy e,

(o] o]
ko * : —iwt
0, = E E 0}, sinaxcos fy e,

where oo = mn/a, f=nn/b, and o is the natural fre-
quency of the system.

Substituting Egs. (22)—(24) into Eq. (12) and collect-
ing the coefficients one obtain

Uo

\<®

where /. = o? (25)

= {0},

for any fixed values of m and n. The elements of coef-
ficient matrix [X] and [M] are given in Appendices D and
E. The matrix [M] refers to mass matrix.

4. Numerical results and discussion

The various models compared in the present study
are given in Table 1. A shear correction factor of 5/6 is
used in computing results using Whitney-Pagano’s
theory. The nondimensionalized natural frequencies @
of general rectangular composite and sandwich plates
with simple supports are considered for comparison.
The nondimensionalized natural frequencies computed
using various models for two, four, six and 10 layer
antisymmetric cross-ply laminate with layers of equal
thickness are given in Table 2.

The orthotropic material properties of individual
layers in all the above laminates considered are E,/E, =
open, Ez = E3, G12 = G13 = 0.6E2, G23 = O.SEQ, Vo =

m=1 n=1
o o v13 = o3 = 0.25. Three-dimensional elasticity solutions
0; = Z Z 0. sinoxsinfiy e, given by Noor [45] is copsidered for comparison. For all
m=1 n—1 the laminate types considered, at lower range of E|/E,
pr =0, ratio equal to 3 and 10 the error in Kant-Manjunatha
Table 1
Displacement models (shear deformation theories) compared
Source Theory Year (Ref.) Degrees of freedom Transverse normal deformation
Present (Model-1) HSDT 1988 [30] 12 Considered
Present (Model-2) HSDT 1988 [29] 9 Not considered
Reddy HSDT 1984 [22] 5 Not considered
Senthilnathan et al. HSDT 1987 [23] 4 Not considered
Whitney—Pagano FSDT 1970 [8] 5 Not considered
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Table 2
Nondimensionalized fundamental frequencies @ = (wb*/h)\/p/E, for a simply supported antisymmetric cross-ply square laminated plates with
alh=5
Lamination and Source E|/E,
number of layers 3 10 20 30 40
(0/90), 3D Elasticity — [45] 6.2578 6.9845 7.6745 8.1763 8.5625
Present (Model-1) 6.2336 (<0.39)*  6.9741 (-0.15) 7.7140 (0.51) 8.2775 (1.24) 8.7272 (1.92)
Present (Model-2) 6.1566 (—1.62) 6.9363 (-0.69) 7.6883 (0.18) 8.2570 (0.99) 8.7097 (1.72)
221 6.2169 (-0.65)  6.9887 (0.06) 7.8210 (1.91) 8.5050 (4.02) 9.0871 (6.13)
[23]° 6.2169 (-0.65) 6.9887 (0.06) 7.8210 (1.91) 8.5050 (4.02) 9.0871 (6.13)
[ 6.1490 (-1.74)  6.9156 (-0.99) 7.6922 (0.23) 8.3112 (1.65) 8.8255 (3.07)
(0/90), 3D Elasticity — [45] 6.5455 8.1445 9.4055 10.1650 10.6798
Present (Model-1) 6.5146 (—0.47)  8.1482 (0.05) 9.4675 (0.66)  10.2733 (1.07)  10.8221 (1.33)
Present (Model-2) 6.4319 (-1.74) 8.1010 (-0.53) 9.4338 (0.30) 10.2463 (0.80) 10.7993 (1.12)
[22° 6.5008 (—0.68) 8.1954 (0.62) 9.6265 (2.35) 10.5348 (3.64) 11.1716 (4.60)
[23]° 6.5008 (—0.68) 8.1954 (0.62) 9.6265 (2.35) 10.5348 (3.64) 11.1716 (4.60)
8PP 6.4402 (-1.61) 8.1963 (0.64) 9.6729 (2.84) 10.6095 (4.37) 11.2635 (5.47)
(0/90), 3D Elasticity — [45] 6.61 8.4143 9.8398 10.6958 11.2728
Present (Model-1) 6.5711 (=0.59)  8.3852 (=0.35) 9.8346 (=0.05)  10.7113 (0.14)  11.3051 (0.29)
Present (Model-2) 6.4873 (—1.86) 8.3372 (-0.92) 9.8012 (-0.39)  10.6853 (—0.10)  11.2838 (0.10)
221 6.5552 (-0.83)  8.4041 (-0.12) 9.9175 (0.79)  10.8542 (1.48)  11.5007 (2.02)
[23]° 6.5552 (-0.83) 8.4041 (-0.12) 9.9176 (0.79) 10.8542 (1.48) 11.5007 (2.02)
[8]P 6.4916 (-1.79) 8.3883 (-0.31) 9.9266 (0.88) 10.8723 (1.65) 11.5189 (2.18)
(0/90); 3D Elasticity — [45] 6.6458 8.5625 10.0843 11.0027 11.6245

Present (Model-1)
Present (Model-2)
22

231

81°

6.6019 (=0.66)
6.5177 (-1.93)
6.5842 (-0.93)
6.5842 (-0.93)
6.5185 (=1.92)

8.5163 (=0.54)
8.4680 (~1.10)
8.5126 (=0.58)
8.5126 (<0.58)
8.4842 (-0.91)

10.0438 (~0.40)
10.0107 (=0.73)
10.0674 (-0.17)
10.0674 (=0.17)
10.0483 (~0.36)

10.9699 (-0.30)
10.9445 (-0.53)
11.0197 (0.15)
11.0197 (0.15)
10.9959 (=0.06)

11.5993 (~0.22)
11.5789 (=0.39)
11.6730 (0.42)
11.6730 (0.42)
11.6374 (0.11)

#Numbers in parentheses are the percentage error with respect to three-dimensional elasticity values.
®Results using these theories are computed independently and are found to be same as the results reported in earlier references.

Table 3

Variation of nondimensionalized fundamental frequencies @ = (wb?/h)+/p/E; with a/h for a simply supported cross-ply square laminated plate

Ei/E; =40, Gz = Gi3 = 0.6E;, Gz = 0.5E;, v =13 =53 =0.25

Lamination and Source alh

number of layers 2 4 10 20 50 100

(0/90) Present (Model-1) 5.0918 7.9081 10.4319 11.0663 11.2688 11.2988
Present (Model-2) 5.0746 7.8904 10.4156 11.0509 11.2537 11.2837
[22]* 5.7170 8.3546 10.5680 11.1052 11.2751 11.3002
23] 5.7170 8.3546 10.5680 11.1052 11.2751 11.3002
[8]* 5.2085 8.0889 10.4610 11.0639 11.2558 11.2842

(0/90/90/0) Present (Model-1) 5.4033 9.2870 15.1048 17.6470 18.6720 18.8357
Present (Model-2) 5.3929 9.2710 15.0949 17.6434 18.6713 18.8355
[22]* 5.5065 9.3235 15.1073 17.6457 18.6718 18.8356
[23]* 6.0017 10.2032 15.9405 17.9938 18.7381 18.8526
81 5.4998 9.3949 15.1426 17.6596 18.6742 18.8362

#Results using these theories are computed independently and are found to be same as the results reported in earlier references.

theory is less compared to other theories. Whereas for
two, four and six layer laminates at higher range of
E,/E, ratio equal to 20-40, the theory of Pandya—Kant
gives better accurate results in comparison to other
theories and the percentage error in computation using
Reddy’s and Senthilnathan’s theory is very much higher.
The variation of natural frequencies with respect to side-
to-thickness ratio a/h is presented in Table 3. The results
show that for thick plates the results of Kant-Manju-

natha and Pandya—Kant theories are in good agreement
and a considerable difference exists between the results
obtained using these theories and the models of Reddy,
Senthilnathan et al., and Whitney—Pagano.

The variation of fundamental frequency with re-
spect to the various parameters like the side-to-thick-
ness ratio (a/h), thickness of the core to thickness of
the flange (¢./t;) and the aspect ratio (a/b) of a five-
layer sandwich plate with antisymmetric cross-ply face
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sheets using all the models are given in tabular form
in Tables 4-6. The following of material properties are
used for the face sheets and the core [47]:

Face sheets (Graphite-Epoxy T300/934)

E; =19 x 10° psi (131 GPa),

E, = 1.5 x 10° psi (10.34 GPa), E, = Es,
G =1 x 10° psi (6.895 GPa),

Gy3 = 0.90 x 10° psi (6.205 GPa),

Gy =1 x 10° psi (6.895 GPa), v, =0.22,

D13 = 022, Uy3 = 0497

p = 0.057 Ib/inch® (1627 kg/m?).

Core properties (Isotropic)
E| = E, = E; =2G = 1000 psi (6.89 x 107° GPa),
Gi, = Gi3 = Gy3 = 500 psi (3.45 x 107° GPa),
D2 = vy3 = 3 = 0,

p =0.3403 x 10~ Ib/inch® (97 kg/m’).

The results clearly show that for all the parameters
considered, the frequency values predicted by models of
Kant-Manjunatha and Pandya—Kant are in good agree-
ment and those of Reddy, Senthilnathan et al., and
Whitney—Pagano theories are higher than those predicted
by Kant-Manjunatha and Pandya—Kant models. For the
same sandwich plate, the variation of fifth mode natural
frequencies with respect to various parameters are shown

Table 4
Nondimensionalized fundamental frequencies @ = (wb?/h)+/(p/E>); of an antisymmetric (0/90/core/0/90) sandwich plate with a/b=1 and
tc/tf =10
alh Present Model-1 Present Model-2 [22]* [23]* [8]
2 1.1941 1.1734 1.6252 1.6252 5.2017
4 2.1036 2.0913 3.1013 3.1013 9.0312
10 4.8594 4.8519 7.0473 7.0473 13.8694
20 8.5955 8.5838 11.2664 11.2664 15.5295
30 11.0981 11.0788 13.6640 13.6640 15.9155
40 12.6821 12.6555 14.4390 14.4390 16.0577
50 13.6899 13.6577 15.0323 15.0323 16.1264
60 14.3497 14.3133 15.3868 15.3868 16.1612
70 14.7977 14.7583 15.6134 15.6134 16.1845
80 15.1119 15.0702 15.7660 15.7660 16.1991
90 15.3380 15.2946 15.8724 15.8724 16.2077
100 15.5093 15.4647 15.9522 15.9522 16.2175

#Results using these theories are computed independently and are reported newly as benchmark results for sandwich plates.

Table 5

Nondimensionalized fundamental frequencies @ = (wb?/h)+/(p/E>); of an antisymmetric (0/90/core/0/90) sandwich plate with a/b=1 and

a/h=10
I/t Present Model-1 Present Model-2 [22]* [23] @ [8]*

4 8.9948 8.9690 10.7409 10.7409 13.9190

10 4.8594 4.8519 7.0473 7.0473 13.8694
20 3.1435 3.1407 4.3734 4.3734 12.8946
30 2.8481 2.8466 3.4815 3.4815 11.9760
40 2.8266 2.8255 3.1664 3.1664 11.2036
50 2.8625 2.8614 3.0561 3.0561 10.5557
100 3.0290 3.0276 3.0500 3.0500 8.4349

#Results using these theories are computed independently and are found to be same as the results reported in earlier references.

Table 6

Nondimensionalized fundamental frequency @ = (wb?/h)+/(p/E>); of an antisymmetric (0/90/core/0/90) sandwich plate with # /¢ = 10 and

a/h =10
a/b Present Model-1 Present Model-2 [22] [231 [8]*
0.5 15.0316 15.0128 21.450 21.6668 39.484
1.0 4.8594 4.8519 7.0473 7.0473 13.8694
1.5 2.8188 2.8130 4.1587 4.1725 9.4910
2.0 2.4560 2.4469 3.6444 3.6582 10.1655
2.5 1.5719 1.5660 2.3324 2.3413 6.5059
3.0 1.3040 1.2976 1.9242 1.9216 5.6588
5.0 0.8187 0.8102 1.1541 1.1550 3.6841

#Results using these theories are computed independently and are found to be same as the results reported in earlier references.
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Fig. 2. Nondimensionalized fifth mode natural frequency (@) versus
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Fig. 3. Nondimensionalized fifth mode natural frequency (@) versus
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supported five-layer sandwich plate with antisymmetric cross-ply face
sheets.
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Fig. 4. Nondimensionalized fifth mode natural frequency (@) versus
aspect ratio (a/b) of a simply supported five-layer sandwich plate with
antisymmetric cross-ply face sheets.

in Figs. 2-4. The results clearly indicate that even at higher
modes of vibration, the natural frequency values obtained
using the theories of Kant-Manjunatha and Pandya—
Kant are in good agreement and is very much lesser
compared to other higher-order and first-order theories
considered in the present investigation.

5. Conclusion

Analytical formulations and solutions to the natural
frequency analysis of simply supported composite and
sandwich plates hitherto not reported in the literature
based on a higher-order refined theory developed by the
first author and already reported in the literature are
presented. The displacement field of this theory takes
into account both the transverse shear and normal de-
formations thus making it more accurate than the first-
order and other higher-order theories considered. For
laminated composite plates the solutions of this higher-
order refined theory are found to be in excellent agree-
ment with the three-dimensional elasticity solutions and
the percentage error with respect to three-dimensional
elasticity solutions is very much less compared to other
shear deformation theories used for comparison in this
study. For sandwich plates the results of Kant-Manju-
natha and Pandya—Kant theories are in good agreement
whereas the first-order theory and the theories of Reddy
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and Senthilnathan et al., overestimates the natural fre- Appendix B. Coefficients of [Q] matrix
quencies at fundamental and at all other modes. The

main aim of this entire investi'gation is to bring Qut 011 = Ciic® + 2(Cry + 2Cua)s* + Cons’,
clearly the accuracy of the various shear deformation

theories in predicting the natural frequencies so that the O = Cpy(c* +5%) + (C + Cp — 4Cy)sc?,
claims made by various investigators regarding the su-

premacy of their models are put to rest. 013 = Ci3¢” + 7,

O1s = (Ci1 — Cip = 2Cay)sc’ + (Cry — Cy + 2Cy)cs”,

Appendix A. Coefficients of [C] matrix
PP 1 Oy = Ciis* + Couc* + (2C1 +4Cy)s*c?,

c _Ei(1 —vy3v3) c ~ Ei(va +v31003) 053 = Ci3s” + Cxc?,
= #7 12 — #,
= (C); — Cjz — 2Cy)s’ Ciy — Cy +2Cy)c?
Cre — Ei(v31 + 02103) Cr — E>(1 —vi3031) Ox = (Cny 12 1)s°c + (Cia — Cyp + 2Cy4)C’s,
13 A ) 22 A ’ Q33 _ C33,
C = Bl t) o B v, O = (Cn — Ca)se,
=(Cy; —2C Cyy — 2C44)Ps% + Cyy(c* 4
Cu = Gip; Css = Gyz;  Ces = Gia, Ou = (Cn 12+ Cx w)C s+ Cu(c” +57),
where Oss = Cssc® + Cgs”,
4= (1 — D12021 — 23032 — U31013 — 2012023031), Oss = (C66 - C55)0S7
and Qg = Csss” + CesC?,
g () g3
£ = — — Uy — — V3] —
1 El 21 E 31 E37 and
gy =2 _p, By, L 0 =0 i,j=1to6,
) = A 32E3 12 £
where
g3 g )
& =7 — Vi35 — L, .
E; E; E, c=coso, §=sinao.
276, PTGy TGy
2 _ @, B _ E, U %. Appendix C. Elements of [4],[4],[B],[B], [D], D], E],
E B B B BB [E'] matrices

[OnHy OnHy OuHs QnHy QuHy 30uH: OunHy, QOnHy OuHs OnHiy 2013H;T
OnHy OxnHy QOuH; OnH; OnHy 30xH; OnH, OxnH, QuHy OnHy 20xH,
OuHs QnHy QOuHs OnHs QuHy 30iHs OuHs QnHy OuHs OnHes 2013H,
OnHy; OnH; QuHs OnHs OnH; 30xHs OnHy OnHy QunHs OnHs 20xH,
OuHi OxnHi QuHs OnHs QOuHi 30uHs OuHy OxnH, QunHiy OnHy 203:H,

[4] = Z OiHy OxnHy OuiHs OxHs OnH; 30uHs OusHy OnHy OuHs OnHs 20u:H, |,
OnH, QOunH, OuHy OuHy OuH, 301iHs OuHs; OnHy OuHs QuHs 2013H;
OnHy, OnH, QOuHy OxnHy OxnH, 30nH, QOnH; OxnH; QOunHs OxnHs 20xH;
OnHy OnHy OuHe QOuHe OnHy 3013Hs OuHs OnHs OuH; QuH; 2013Hs
OnHy OnHy QOunHs OnHs OnHy 30nHs OnHs OxnHs QOunH; OxnH; 20x3Hs

LOuHy OnHy QuHy OxnHy QOuHy 303uHy QuHs OxnHs QiHs OxnHs  2033H;




OuH,
OusH;
OuH,
OuH,

O,
OxH,
OuH;
OnH;
v | Qe
OxuH;
OuH,
OxnH,
O14H,
OxnH,
| O3t

[ Oty
OuH;
Out,
L O14Hy

OseH)
OssH3
OseH>
OscH,y

OseH,
OseH;
OseH,
OscHy

QOssH,
OssH;
OssH,
OssHy

OscHi
OseH3
OseH
OseH,

=
I
Mz

2

[E'] =

~
I

OusH;
QusHs
OuH,y
OuHs

Ot
OuH;
O1Hs
O Hs
Ot
O34 Hs
O14H,
0r4H,
O14H
0O H
OxuH,

O H,
OnH;
Ot
0r4H,

OseH3
OseHs
OseH,
OscHs

OscH;
OseHs
OseHy
OscH

OssH;
OssHs
OssH,
OssH

OscH;
OseHs
OseH,
OseHs
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OuH,
OuHy
OusH;
OusHs

Ot
O H,
O14H,
0OxH,
Ot
0OsH,
OuH;
Ot
QO1aHs
O Hs
Ot

OuH;
QuHs
Oty
O1aHs

Oset>
OseHy
OseH3
Os6Hs

OscH,
OseHy
OseH;3
QOscHs

OssH,
OssH,
OssH;
QssHs

OscH,
OseH,
OseHs3
OseHs

OusH,y
OuaHs
OuHs |’
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O14Hy |
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O14H
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Os4H,
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Appendix D. Coefficients of matrix [X]

Xig=A19% +Biif’, Xia=Ai208+ Biop,

Xi3=0, Xig=4,70%+Bsp,

30uH;
3034H;s
30uH,
30:14H;

Xis =Ai50B + Bieof, Xie=—Aisa,
Xi7=A130% + Bi3f°, Xig = A1 408 + By 40p,
Xig=—Ayj0,  Xijo=A1e® + Bi1f,

Xinn = A1100B + Bigaf, X = —A60.

Xop = Ao + Bioo?, Xp3=0,

Xoa = Ar70B + Bisaf, Xos=Arsf + B,
Xos = —Aasf, Xo7 = Arz0f + Bizop,

Xog = Ao’ + Biao?, Xoo = —Aryip,

Xo10 = Aro0f + Bijaf, Xon = Az 0B + By o7,
Xo12 = —Ar6p.

X33 =Di120% + Eiaf’, Xsa =Dy,
Xos =Ef, Xag = Dig® + Ei6f,

83

X37=Dis0, Xsg=Esp,

Outy, OuH, QuHy OxHy 20:4H,
OuHy OuHy QuHs OnHs 2034Hy
Ouly OwuH;y QuHs QOuHs 20:H;
QuHs QOuHs QuH; OuH; 203Hs

Xz9 = Dy40” + E1,4/32, X310 = Dy 30,
X =Ei3B, Xz = D70’ -|-El,7/32
Xig = A770% + B3 sp> + Dy 1,

Xys = A7gof + Bagafl, Xy = —A7s0+ D0,
Xi7 = A730° + B33f + Dis,

Xag = A740P + B3aof, Xso = —A71100+ Dyaa,
Xy10 = A790% + B3,7ﬁ2 + D3,

Xa11 = A7100 + Bigaf, Xa1n = —A7e0+ Dot

Xss = Agsf* + Bsgo® + Ei ),

Xsg = —AgsP+Eef, Xs7=Asz0f+ B3zop,

Xsg = A8,4ﬁ2 + B340 + Ey s,

Xsg = —Asuf+Eraf, Xsio=Asoaf + Bs0p,

X511 = s 108 + Bygt? + Ei3, Xsio = —Agef + E17p.
Xoo = Dsso” + Esf’ + 4s3s,

Xog = Dsso— Aszo, Xeg = Ezsp — Asap,

X9 = D340” + Es 4 + 4s 1,

Xo10 = D3z — Asoor,  Xe11 = E338 — As 108,

Xo12 = Dsyg0% + B + Asg.
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Xo7 = A330% + Bz,3ﬁ2 +2Dss,
X718 = A3 40P + B 40,
X710 = A390% + Byif* + 2D; 3,
X711 = Az008 + Bagof,

X790 = —A3 1100+ 2Ds 40,

X7_’12 = _A3,6~'x + 2D3_]70€.

Xgs = Agaf’ + Brao? + 2E;35,

Xso = —Aanf+2E54f,  Xsio = Aapaff + Brj0p,

Xoa1 = Aarof” + Baygo? +2E35, Xgio = —Aaef + 2Es 7P
Xog = Dy40” + Ey 48 + 241111,

Xo10 = Dasoe — 24190, Xon1 = Ex3f — 2411108,

Xo12 = D270? + Ex 7 + 2416.

Xio.10 = Ag90® + By7 > + 3Dy,

Xioj1 = Ao 100 + Bagafl,  Xig12 = —Ageo + 3D 701

X = Aw0f* + Bygo? + 3E, 3,
X2 = —Aweph + 3E27P,

Xiia = Dayo® + Eg7f° + 34,
X=X, (i,j=1,12).

Appendix E. Coefficients of mass matrix [M]

Myy=1, M,=0, M;3;=0, Mys=15,
Mis=0, Ms=0, M;=105L M;z=0,
Myo=0, My=1L, Mu=0M,g,=0.
My, =1, My3;=0, My4=0, Mys=1D5I,
My =0, My;=0, Myg=15L, Myg=0,
My1o=0, Myy =1y, My, =0.

My; =1, M;4=0, Mys=0, Mge=15I,
M7 =0, Mg=0, Mo=1, Ms; =0,
M3 =0, Mspn=1.

Mys =1, Mys=0, Myg=0, M;=1,
Mys =0, Myg=0, My=15, Msyy=0,
My, =0.

Mss =1, Mss=0, Ms;=0, Msg=1,
Msg =0, Ms10=0, Ms; =15, Ms;=0.
Mes =1, Msg7=0, Mes=0, Mso=1L,
Mgi1o=0, Msgy1 =0, Msin=15, M;;=1I,
Mg =0, M;9g=0, Myyo=1, M, =0,
M7_’12 =0.

Mg =15, Mgg=0, Mgio=0, Mgy =1,
Mg, =0, Myg=15, Mo1o=0, Moy =0,
My 1> = Ig.

Moo =1, M1 =0, Myn=0,
Myn=15, Min=0, Myn=1I,

M] == Alj,i (l,] = 1 tO 12)
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