
295Vol. II of II | Glimpses of Research |

Computer systems affect diverse aspects of our lives today. From the mobile
phones we use to the cars, trains and airplanes we ride and fly in, from the ATMs
dispensing money to the EVMs used in elections, from the life-support systems
in ICUs to railway signaling systems, (embedded) computer systems silently
pervade our lives. Needless to say, software or hardware bugs in these systems
can have wide ranging consequences, from mere inconvenience to even loss of
lives. Being able to detect bugs in computer systems is therefore important, and
being able to certify the absence of bugs is of immense practical value, especially
in safety-critical systems. Although testing remains the mainstream approach for
bug-hunting, exhaustive testing is impractical for all but the simplest of systems.
For example, to comprehensively test a module that claims to add two 64-bit
integers requires providing 2128 test cases. Even if each test could be completed
in 1 femtosecond, this would require approximately 1016 years! How do we
then show that much more complex systems like railway signal controllers or
the autopilot of an aircraft, on which the safety of lives are entrusted, are free of
bugs?

At the Centre for Formal Design and
Verification of Software (CFDVS), IIT
Bombay, we focus on scalable formal
methods to address questions like
the one above. Loosely speaking,
formal methods are mathematical
and computational techniques for
proving properties of systems, without
depending on test cases. Given a
system, its behaviour is modeled using a
mathematical formalism, viz. automata,
state transition systems, process
algebras, etc. The requirement (what it
is supposed to do) is also captured in an
unambiguous way, using formalisms
like logic, automata, constraint systems,
property specification languages, etc.

The mathematical object representing the requirement is then checked against
the mathematical object representing the model to determine if the model
permits any behaviour that violates the requirement. This is done by specialised
algorithms that try to achieve a fine balance between providing correctness
guarantees and performance that scales to large problem instances.

The unique strength of formal methods is its ability to weed out bugs in deep
corners of the input space that may elude even the most experienced engineers.
After all, we’d really like to rest assured the next time we travel in a train or fly in
an airplane that the computers on which we entrust our safety are really doing
what they are meant to do.

Hunting down elusive computer bugs: Formal methods to
the rescue

Prof. Supratik Chakraborty, Department of Computer Science and Engineering, supratik@cse.iitb.ac.in

