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Matrices

What is a complex matrix A “ raij smˆn of order m ˆ n ?

A matrix A “ raij smˆn with entries from the set of complex
numbers C is a linear transformation/linear operator from the
complex vector space Cn to Cm, that is, for all x, y P Cn and for all
c P C

Apx` yq “ Ax` Ay and Apcxq “ cAx

Here Cn is Cartesian product of n copies of C.

Every linear transformation from Cn to Cm for any pair of positive
integers m, n is a continuous function.
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Operators

‚ A complex Hilbert space of finite dimension say n is nothing but
the complex vector space Cn.

‚ An infinite dimensional Hilbert space H is just an extension to
dimension infinity of the idea of a finite dimensional vector space.
Indeed, a Hilbert space H is either Cn or an infinite dimensional
norm vector space where the norm is defined by an inner product
on H such that every cauchy sequence in H converges in H with
respect to the norm.

Definition

We define an operator T : H1 Ñ H2 to be a continuous linear
transformation between two complex Hilbert spaces H1,H2. If
T : HÑ H is a continuous linear transformation, then we say that
T is an operator on H.

‚ The norm of T is defined as }T } “ supt}Tx} : }x} ď 1u.
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Contraction and spectral set

Definition

The spectrum of a matrix is the set of its eigenvalues and the
spectrum of an arbitrary operator T is the set

σpT q “ tλ P C : pT ´ λq´1 does not existu

Definition

An operator T with }T } ď 1 is called a contraction.

How can we describe a contraction in a geometric way ?

Spectral Set. A compact subset K Ă C is a called a spectral set
for an operator Q if σpQq Ă K and von Neumann’s inquality holds,
that is, for every complex polynomial ppzq,

}ppQq} ď supt|ppzq| : z P Ku.
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Contraction and spectral set

For example if ppzq “ 3z2 ` 2iz ` 5, then ppQq “ 3Q2 ` 2iQ ` 5I .

Remark. If K is a spectral set for an operator Q, then we say that
Q lives inside K .

Theorem (von Neumann, 1951)

An operator T on a Hilbert space H is a contraction if and only if
the closed unit disk D in the complex plane C is a spectral set for
T , where

D “ tz P C : |z | ď 1u.

Remark. An abstract object like an operator with norm not
greater than 1 can be defined and explained by an underlying
subset of the complex plane.
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Unitary and completely non-unitary contractions

Definition

1 An operator U is called a unitary if U˚U “ UU˚ “ I or
equivalently if U is normal and the unit circle of the complex
plane T is a spectral set for U, where

T “ tz P C : |z | “ 1u.

So, a normal operator U is a unitary if it lives on the unit
circle. So, U by default is a contraction.

2 A contraction P defined on H is called a completely
non-unitary contraction if there is no (reducing) linear
subspace of H on which P acts like a unitary.
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Canonical decomposition of a contraction

Theorem (Canonical decomposition of a contraction by Sz.-Nagy)

Let T be a contraction defined on a Hilbert space H. Then
H “ H1 ‘H2, where both H1,H2 reduce T and T |H1 is a unitary
and T |H2 is a completely non-unitary contraction.

Remark. Canonical decomposition of a contraction splits a
contraction into two orthogonal parts of which one lives on the
boundary of the unit disk and the other lives inside the disk.
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The tetrablock and Tetrablock contractions

The tetrablock is the following subset of C3:

E “ tpx1, x2, x3q P C3 : x1 “ c1`c2x3 , x2 “ c2`c1x3 , |c1|`|c2| ă 1u.

The set has its origin in control engineering.

Definition

1 A triple of commuting operators pT1,T2,T3q for which the
tetrablock E is a spectral set is called a tetrablock contraction
or an E-contraction. The operators T1,T2,T3 are all defined
on a Hilbert space H.

2 A triple of commuting normal operators pP1,P2,P3q is called
a tetrablock unitary or an E-unitary if the boundary bE of E
is a spectral set for pP1,P2,P3q.

3 A tetrablock contraction pQ1,Q2,Q3q, defined on H, is called
completely non-unitary if it does not act like a tetrablock
unitary on any (reducing) linear subspace of H.
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The canonical decomposition of a tetrablock contraction

Theorem (Sourav Pal, 2016)

Every tetrablock contraction can be split into two orthogonal parts
of which one is tetrablock unitary and the other is a completely
non-unitary tetrablock contraction. This can be stated in the
following form:
Let pA,B,Pq be an E-contraction on a Hilbert space H. Let H1

be the maximal subspace of H which reduces P and on which P is
unitary. Let H2 “ HaH1. Then H1,H2 reduce A,B;
pA|H1 ,B|H1 ,P|H1q is an E-unitary and pA|H2 ,B|H2 ,P|H2q is a
completely non-unitary E-contraction. The subspaces H1 or H2

may equal to the trivial subspace t0u.
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Thanks for your attention !
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