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Genotype to Phenotype

1 Genome

1 Transcriptome
1 Proteome

1 Metabalome

1 Phenotype

Presence of genome does not ensure a phenotype
It requires a specific state in the hierarchical chain.



Central Dogma of Biology

Luciferase Gene Genetic network

Luciferase gene decoded RNA network

Catalyzed by Luciferase Enzyme Protein network

Phosphorous release Metabolic network
using ATP

Physiological state
Firefly Glows

Transgenic Plant made to Glow
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Quantification of Systems

1 Engineering systems are quantified to a level
that they are designed, optimized and
optimally operated.

1 Genetic, signaling/protein and metabolic
networks are the result of reductionist
approach of Molecular Biology.

1 Bioinformatics has added more information
to this approach.

1 Principles of system science can be applied
to component biology:



System Analysis and Quantification

1 Design

1 Operation

1 Control

1 Fault Diagnosis
1 Evolve



Bottom-up Design of a Complex System
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Design in Nature: Top-Down
Approach (Escherichia coli)

“Omics” Data

Gzenomics

" About 4400 genes

* Connectivity between genes, RIELEUINE
mRNA, proteins & metabolites

" Thousands of feedback loops | —

" No design principles
available

Metabolomibcs

" No computation — control &
sensing achieved through
interactions of biomolecules
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Complexity in Engineered and
Natural Systems

1 Non-linear dynamics

1 Multiple feedback loops

i Multiple interactions

1 Cascade structures

1 Feed forward loops

1 |nteractions between modules
1 Timescale separation

Resulting in a Complex system
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How often have I said to you that
when you have eliminated the
impossible, whatever remains,

however improbable, must be the
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Overview of Human Metabolism
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Metabolic Regulation

Insulin (Anabolic) Glucagon (Catabolic) Adrenaline
1 Glucose uptake 1 Glycogen breakdown
Glycolysis Gluconeogenesis
Glycogen synthesis Fat breakdown

Protein synthesis Proteolysis
Fat Svnthesis Ketogenesis

1 Glycogen breakdown
1 Fat breakdown

(During Higher work
rate and Exercise)
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Whole body Energy Balance

1 Energy intake = total energy output

(heat + work + energy storage)

i Average Energy Intake per day
Carbohydrates-250 g, Fat-80 g, Protein-100 g
1 Average Energy output

Heat is usually about 60% - basal metabolic rate
Excess energy is stored in the form of fat or glycogen

1 Contribution to total Energy Expenditure

Glucose -34% i.e. 130 mg/min @ 17 KJ/g
Fat- 66% i.e. 112 mg/min @ 38 KJ/g



Metabolic Controllers

3 Energy status of the cell controls metabolic fluxes
3 Anabolic Pathways (after meal and storage) are controlled by

Phosphorylation state (Positive) = (ATP/ADP)
Redox State (Positive) = (NADH/NAD)

3 Catabolic Pathways (while rest and Exercise) are controlled by
Phosphorylation state (Negative) = (ADP/ATP)
Redox State (Negative) = (NAD/NADH)

l Glucagon and Insulin works as a rein controller
Glucagon/Insulin ratio governs breakdown of Glycogen and Fat

# Adrenaline (Epinephrine)-Neural activation of Metabolic fluxes
During exercise or higher work rate Adrenaline effect Accelerates catabolism

l Blood flow to tissues changes with exercise and work rate
Blood flow increases in muscles and heart while decreases in Gl track and Liver



Defective Metabolic Homeostasis

Retinopathy ||_Cardiomyopathy

Alzheimer

mephropathY IX y Obesity

Neuropathy Metabolic

Insulin Multi-Hormonal
Dyslipidemia Resistance defects

Syndrome

Hyperglycemia

.

Accumulation

Food Physical
Intake Activit




Whole Body Metabolic Model

1 A kinetic model to represent metabolism
integrated with signaling pathway

# Modular analysis towards in silico
representation of different organ tissue types

1 Metabolism connected to blood metabolite
concentration

1 Study the effect of perturbation in signaling
pathway
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Integration of Models

8 The output of signaling pathways were given as the
inputs for metabolic Network.

l Separate equations were modeled for Glucose transport
through Glucose transporters, Fat transporters and
Amino Acid transporters in different tissues.

3 Around 600 rate equations Muscle
including 300 odes & 1000 [y
parameters

Adipocyte

Liver

Gl track
Brain



Interplay of ISP-mTOR-TNF
Signhaling for Anabolism
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Whole body Metabolism
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Results for Whole body Metabolism

(While Rest-Plasma Conc.)

One and half day simulation of fasting dynamics
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Results for Whole body Metabolism

(While Exercise-Plasma conc.)
Response for One hour exercise at 150 watt work-load
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Results for Whole body Metabolism

(Postprandial-Plasma conc.)
Meal — 50, 75, 75 g of Carbohydrate
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Parametric Sensitivity for Insulin
Signalling Pathway

Blue — GSK3, Red — PI3K, Violet — PTEN
Normal Blood Glucose level-4.9mmol,
Diabetic Blood Glucose level above-7mmol

Parameter Sensitivity Analysis
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Sensitive Nodes In Insulin Pathway
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Parameter perturbation

Dual perturbations in both PTP and PI3K can restore normalcy
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Bistability in Insulin Signaling Pathway
Type-ll Diabetic State — Effect of PTP
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Carbohydrate Intake-Response

BG Peak value normalised by 8.78, Tss value normalised by 180 min

Fold change in response to carbohydrate intake
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Number of meals per Day

Peak BG value normalized-7, Tss value normalized-290

Number of meals/Day for 200g of Carbohydrate |ntake

Time required to /

reach normal BG

Maximum BG
Peak value

(7]
]
=
©
>
O
Q
N
©
=
S
o
=

=

Optimum lies around
3 meals/day

—
U1

Number of meals




Optimal Meal Distribution per Day

Break fast-50 g, Lunch-100-140 g, and dinner-10-50 g
Mean Peak value Normalized-7.83,Tss normalized-215 m

Meal Distribution per Day
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Conclusions

I Simulations of lifestyle and obesity conditions
possible

i Effect of Perturbations under low calories was
less compared to high calorie diet

il Effect of exercise can be studied, effects are
slow and long term simulations needed

3 More data to fine tune the model

i Data from Indian population for healthy and
diabetic conditions is a lacuna

1 In future, model should be linked to clinical data



Metabolism and Cancer

High alpha-KG
maintains
normal growth

Low alpha-KG
Activates HIFI
leading to
lactate
formation and
higher uptake
of glucose

HIF — Hypoxia
Inducing Factor
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Bistability of a-ketoglutarate levels
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Metabolism and Cancer
Metabolic Transition: Oxidation to fermentation

Gl ucose Glucose
Pyruvate - | actate Pyruvate L actate
Normal cell Tumor cell

This transition also occurs under normal conditions,
whenever rapid proliferation is required, such as
wound healing



Interplay between
Metabolism and

sighaling
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Conclusions

1 Quantification is key to Systems Biology
i Design principles inherent in Biological structure

i System analysis to elucidate role of structure
and connectivity

I Operational characteristics of networks

i Fault-diagnosis for characterization of disease
state

i Possible sites in the network as drug targets

1 Modular analysis towards in silico cellular
representation
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