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Dissemination of research work on power transformers: design, testing,
operation, and diagnostics
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through the book:

S.V. Kulkarni and S.A. Khaparde, Transformer Engineering: Design, Technology,
and Diagnostics, Second Edition, CRC Press, New York, September 2012
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Power Transformers

Technology hasn’t changed significantly, but the challenges

are:
o Continuous increase in ratings and sizes
o Limitations on weight and space
0 Accurate prediction of performance parameters
0 Increasing power system complexities

Onerous site conditions:

0 Harmonics o Overloading
0 Resonances 0 Unbalanced conditions
o Short circuits a Overfluxing

0 Overvoltages
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Ref: A. P. S. Baghel and S. V. Kulkarni, “Dynamic Loss Inclusion in the Jiles-Atherton Hysteresis Model Using the Original
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Rotational Flux in a T-Joint
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Courtesy: Crompton Greaves Ltd.

Windings of a Transformer

Courtesy: AREVA T&D India Ltd.

= Design considerations have often conflicting requirements:

U 000 O

conductor radius
paper covering
conductor thickness
first duct

radial spacer width

- dielectric Vs mechanical

- dielectric Vs thermal

. mechanical Vs electromagnetic
: thermal Vs dielectric

: thermal Vs mechanical
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Need for Numerical Analysis

Computation of electromagnetic fields is essential in low
frequency and high frequency devices for:

o Design optimization
o Reliability enhancement

o Investigative analysis

Numerical Methods

o Difference methods (FDM, FDTD)
o Variational / weighted residual approach (FEM)
o Integral methods (MoM, BEM)

FEM has emerged as the most popular technigue for
transformers
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Finite Element Formulation for Different EM Problems

Poisson’s equation: High voltage insulation design

VA= —yuJ, Dmm) [Ke]m 1A} = {be}3><1
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Diffusion equation: Time-harmonic eddy current problems
VPA =—pd + joouA EE (K (A= jo| T° [{AT) ={b%)
Transient analysis: Magnetizing inrush simulation

VA=-J, + 02 = [Kl{an))-[T]Z(A (1)) =(p)

ot ot
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Coupled Fields in Transformers

Classification:
o Weakly coupled fields
o Strongly coupled fields

Weak or indirect coupling:
o Solution of one field as load to another field
o Approach is flexible, modular and easy to use

Strong or direct coupling:
o Coupled field equations are solved simultaneously
o Concurrent handling of all physical aspects of fields

o The approach is essential for nonlinear phenomena and when the
coupled fields have comparable time constants
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‘ Coupled Fields in Transformers
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; Coupled Field Formulations: Field-Circuit Coupling

= Electromagnetic model:

II'T Bo

vx(ivXAszo—a%—?—avv +VxM+oux(VxA)
7

here, M is the magnetization vector and U is the velocity of conductors

= Clircuit coupling:

(U:’ Finite—element method model

/ /
Field-circuit coupling mechanism
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Coupled Field Formulations: Field-Circuit Coupllng
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Coupled Field Formulations: Magnetic-Thermal

Governing Equations:

vV

v (2v(a)) =0 rom %

u ot

V-(kV(T)):—q(AZ )+mc66—I

where, k is the thermal conductivity, m

IS the mass density, c is the specific
heat, and q is the loss term.

Coupling Relation:
Temperature dependence:

U oy

Eddy cutrent
loss as loads

Electromagnetic Thermal
Field field

Change it
cotuductivity

Weakly coupled model

Loss calculation:

51 e
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Coupled Field Formulations: Magnetic-Structural

Coupled Equations: M and K are magnetic and

M] [C]][{A}] _ ({0 mechanical stiffness  matrices

{[D] [K]H{X}}_{{F}} respectively. A and X are nodal
values of magnetic vector
potential and displacements.
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The formulation with suitable modifications can be used for:
o Analysis of core noise: Magnetostriction phenomenon

Computation of noise due to winding vibration (JxB force)

Analysis of winding deformations due to short circuit forces

Design of high current carrying bars in large rectifier and furnace duty
applications

0O 0O O
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Case Studies

16/29



>
‘é 1. Half-Turn Effect
= Single-phase three-limb transformer
= Measured ~ FEM il oue e IR
Flux density in 1.04 0.93 | (——
end limbs (T)
Extra core loss 4.2 3.9 .
due to the half- N@%’:\g” =
(a) Flux lines (b) fux density plots with half-turn

turn effect (kW)

Three-phase five-limb transformer
Flux density (T) for unbalanced currents in windings
20% unbalance

Balanced 10% unbalance
Without half-turn 0.02 0.035 0.045
0.108 0.25

With half-turn 0.04
Ref: G. B. Kumbhar, S. V. Kulkarni, and V. S. Joshi, “Analysis of half-turn effect in power transformers

0.5

0.4

n 2

17/29

using nonlinear-transient FE formulation,” IEEE Transactions on Power Delivery, vol. 22, Jan 2007,

pp. 195-200.
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Currentin Amperes

2. Sympathetic Inrush
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Ref: G. B. Kumbhar and S. V. Kulkarni, “Analysis of Sympathetic Inrush Phenomena in Transformers
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3. Interphase Transformer (IPT)
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Ref: R. S. Bhide, G. B. Kumbhar, S. V. Kulkarni, and J. P. Koria, “Coupled circuit-field formulation for
analysis of parallel operation of converters with interphase transformer,” Electric Power Systems ~ 19/29
Research. Vol. 78. Issue 1. Januaryv 2008. pp. 158-164.
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4. Over-excitation Conditions

= Commonly specified over-excitation conditions are: 110% or 115%
continuous, 125% for 1 minute. 140% for 5 seconds. 150% for 1 second
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Flux distribution at 110 % over-excitation condition
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Eddy currents in frame

Ref: D. A. Koppikar, S. V. Kulkarni, and S. A. Khaparde, “Overfluxing simulation of transformer by 3D

FEM analysis,” Fourth Conference on EHV Technology, 11Sc Bangalore, 17-18 July 1998, pp. 69-71. 20/29
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. Dynamic Hysteresis
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Hysteresis phenomenon i1s modelled using the Jiles-Atherton
model

Dynamic losses are iIncluded using the field separation
approach

Fixed point method is used to account for nonlinearities

Ref: A. P. S. Baghel and S. V. Kulkarni, “Modeling of magnetic characteristics including hysteresis effects
for transformers,” Invited paper, 3rd International Colloquium Transformer Research and Asset
Management, Split, Croatia, October 15 - 17, 2014.
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;;? 6. Frequency Response Analysis

107 7

-+ Duality based Model
--------- FEM based Model
— Experimental data

+ Duality based Model
—--FEM based Model
— Experimental data

II'T RN
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Ref: K. P. Badgujar, A. P. S. Baghel, and S. V. Kulkarni, “A Coupled Field-Circuit Formulation and a Duality Based
Approach for Analysis of Low-Frequency Response of Transformers,” Annual IEEE India 22/29
Conference (INDICON), Mumbai, 2013.



/. MTL-based Modeling: VFTO Analysis
VFTO: Very Fast Transient Overvoltages
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MTL (multi-conductor transmission line): bridge between
circuit and detailed field modeling

Each turn = transmission line
Suitable for very high frequencies
Nuys -> sections oscillate together, Stearn = incoherent

Ref: M. M. Kane and S. V. Kulkarni, "MTL-Based Analysis to Distinguish High-Frequency Behavior of
Interleaved Windings in Power Transformers," IEEE Transactions on Power Delivery, vol. 28, 23/29
pp. 2291-2299. Oct. 2013.



8. Current Distribution and Temperature Rise of Bars
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Ref: G. B. Kumbhar, S.V. Kulkarni, R. Escarela-Perez, and E. Campero-Littlewood, “Applications of
coupled field formulations to electrical machinery,” The International Journal for Computation and
Mathematics in Electrical and Electronic Engineering, Vol. 26, 2007, pp. 489-523. 24/29
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9. Eddy Currents in Flitch Plates
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plate losses in power transformers,” IEEE Transactions on Power Delivery., vol. 14, no. 3, July 1999,
pp. 996-1001.
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10. Eddy Current Loss

ANSYS

IN Bush

Ing Mounting Plates

Current | Method A | Method B | Method C|Method D
(A) (W) (W) (W) (W)
2000 56 66 65 58
2250 68 84 74 70
2500 81 103 95 93
2800 08 130 119 116

Ow >

D.

i

Analytical

3D FEM

From Steady State
Temp. Rise

From Transient
Temp. Rise

Ref: S. V. Kulkarni, J. C. Olivares, R. Escarela-Perez, V. K. Lakhiani, and J. Turowski, “Evaluation of eddy

losses in cover plates of distribution transformers,” IEE Proceedings -Science, Measurement and Technology,
vol. 151, no. 5, Sep. 2004, pp. 313-318
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2| 11. Electromagnetic-Structural Analysis of
% Splrallng Phenomenon In a Hellcal Wlndlng
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_,.with force applied at its one end
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Circumferential displacement plot i heteht ot pmer e, () Helix angle, degrees

of the winding conductors. (a) Healthy Circumferential displacement Variation of the factor of safety with
condition (b) Short-circuit condition of the conductors the helix angle

Ref: A. Bakshi and S. V. Kulkarni, “Coupled Electromagnetic-Structural Analysis of the Spiraling

Phenomenon in a Helical Winding of a Power Transformer,” IEEE Transactions on Power Delivery, 27/29

\ol. 29. Feb. 2014. po. 235-240.
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Conclusions

Coupled field treatment iIs required to solve many intricate
problems in the transformers

Analysis of some diverse and important problems associated
with power transformers is presented

The considered problems are such that they could only be
solved accurately using the coupled-field formulations

The work has dealt with real life practical problems faced by
transformer researchers and most of the studies are applicable
to a wide range of transformers

The developed competence can be used to solve complex
coupled problems in other electrical machines and power
apparatus
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Testimonials/Feedback

Prof. Francisco de Leon, New York University

“The impact of his book is tremendous. | have had several post-
doctoral fellows, who move to/from New York City from their
countries, and the only book they carry with them is Prof. Kulkarni’s
transformer book.”

Mr. P Ramachandran, Technical Advisor, ABB India Ltd

“Frequent references to this book in various technical discussion fora
and electrical engineering websites show the wide popularity and
acceptance of this book around the world. Transformer factories around
the world use this popular text as a reference book.”
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