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⋆, such that

∀π ∈ Π,∀s ∈ S : V
π
⋆

(s) ≥ V
π(s).

What is the complexity of computing an optimal policy?

Note: an MDP with |S| = n states and |A| = k actions has a total of k
n policies.

One extra definition needed: Action Value Function Q
π

a for a ∈ A.

Q
π

a = Ra + γTaV
π.

Given π, a polynomial computation yields V
π and Q

π

a for a ∈ A.
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Policy Iteration (PI)

π ← Arbitrary policy.
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π ← PolicyImprovement(π).
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Policy Iteration (PI)

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Different switching strategies lead to different routes to the top.

How long are the routes?!
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Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant Type k = 2 General k

Howard’s PI
Deterministic O

(

2n

n

)

O

(

k
n

n

)

[H60, MS99]

Mansour and Singh’s
Randomised 1.7172n ≈ O

(

k

2

)n

Randomised PI [MS99]
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n ≤ (2+ ln(k−1))n.
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Conclusion

Policy Iteration: widely used algorithm, more than half a century old.

Substantial gap exists between upper and lower bounds.

We furnish several exponential improvements to upper bounds.
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shown improved upper bounds!

Open problem: Is the number of iterations taken by Howard’s PI on n-state,

2-action MDPs upper-bounded by the (n + 2)-nd Fibonacci number?

For references see tutorial.

Theoretical Analysis of Policy Iteration
Tutorial at IJCAI 2017
https://www.cse.iitb.ac.in/ shivaram/resources/ijcai-2017-tutorial-
policyiteration/index.html.
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shown improved upper bounds!

Open problem: Is the number of iterations taken by Howard’s PI on n-state,
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For references see tutorial.

Theoretical Analysis of Policy Iteration
Tutorial at IJCAI 2017
https://www.cse.iitb.ac.in/ shivaram/resources/ijcai-2017-tutorial-
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Thank you!
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