

Development of Helmet-Patient Interface for Non-Invasive Ventilation

Prof. Ramesh Singh, IIT Bombay Prof. Soham Mujumdar, IIT Bombay Dr. R. R. Sonde, Thermax Limited

Outline

- Need for non-Invasive ventilation (NIV) in COVID-19
- Product highlights and key features
- Engineering Innovations
- In-laboratory mechanical testing on mannequin
- Path to deployment with COVID-19 patients
- Summary

Need for Non-Invasive Ventilation in COVID-19 in India

- Unprecedented health crisis in India
- Graph still exponential with 12.4 lakhs
 cases and 29,861 deaths (8 am July 23)

- COVID-19 causes respiratory distress
- ~5% of the infected patients need oxygenation and ~2% need ventilator support
- High-flowNasalCanulaisconventionally used for oxygenation
- A helmet patient interface (HPI) which delivers oxygen-rich air at a constant positive airway pressure (CPAP) is very effective way of oxygenation for COVID-19 Hypoxia patients
- The effectiveness of this NIV helmet with COVID-19 patients has been reported from Europe

Strong Case for Helmet Patient Interface

Esquinas Rodriguez *et al.* Critical Care 2013, **17**:223 http://ccforum.com/content/17/2/223

REVIEW

Clinical review: helmet and non-invasive mechanical ventilation in critically ill patients

Antonio M Esquinas Rodriguez^{1*}, Peter J Papadakos², Michele Carron³, Roberto Cosentini⁴ and Davide Chiumello⁵

- Clinical review of 152 studies establishes efficacy of helmet-based NIV
- NIV with helmet reduces CO₂ rebreathing and ventilator asynchrony
- Review concludes "NIV delivered by helmet could be safe alternative to the face mask . in patients with acute respiratory failure"

J Cardiothorac Vasc Anesth. 2020 May 8 doi: 10.1053/j.jvca.2020.04.060 [Epub ahead of print]

PMCID: PMC7205670 PMID: <u>32540245</u>

Role of Helmet-Delivered Noninvasive Pressure Support Ventilation in COVID-19 Patients

<u>Richard J. Ing</u>, MBBCh, FCA (SA),*[†] <u>Corey Bills</u>, MD, MPH,^{†‡} <u>Glenn Merritt</u>, MD,[§]¶ <u>Rosalia Ragusa</u>, MD,[#] <u>Ross M. Bremner</u>, MD,[#] and <u>Francesco Bellia</u>, MD**

- Suggested key points
 - Long duration NIV
 - Skin lesions
 - Air leaks in masks/Mask intolerance
 - Avoid CPAP via Mechanical Ventilator
 - 50% higher PEEP with helmets as compared to masks

Helmet Patient Interface (HPI) Non-invasive Ventilation (NIV) for Hypoxia

INDUSTRY-ACADEMIA COLLABORATION

HPI SPECIFICATIONS

- Continuous Air/O₂ delivery
- Adjustable flowrate: 15 60 LPM
- FiO_2 between 21% (Air) to 100% (Pure O_2)
- Adjustable expiratory pressure : 5 20 cm H₂O
- HPI works with CPAP device, wall oxygen-air supply, or any commercial ventilator

Continuous Positive Air Pressure-Helmet Patient Interface (CPAP-HPI) is a *ready-to-use device*

Studies have found *non-invasive ventilation to be extremely effective* based on objective parameters of pulmonary mechanics, biochemistry and final treatment outcomes*

Key Features and Benefits

• Benefits for the Patient

- Ventilation asynchrony is not present, minimizes claustrophobia, avoids pain and sense of suffocation
- No nasal cannula or intubation, no headgear to tighten, no irritation \rightarrow Comfort for a longer period
- Spacious with a clear view all around
- Patient can speak, listen, drink, wear glasses while being treated

Patient Management

- Due to completely sealed and "zero leakage", protects associated health workers

Manometer

- As patient is more comfortable, treatment is continued without breaks associated with intubation, mask pressures, nebulized drug therapy etc.
- LARGE ACCESS PORT: For easy care drink, facial cleaning, expectorate
- **SEALED CATHETER PORT:** Provides access for drug delivery, sensors, liquid intakes
- The upper portion is easily removable

Safety Features and Alarms

- Anti-asphyxia valve and pressure relief valves
- The HEPA filter ensures patient exhales pathogen-free air for safety of health workers
- AUDIO-VISUAL ALARMS: Low Pressure/High Pressure/Battery Fault/Low Battery/Battery Charge Indicator
- Separate flow meters for oxygen and total flow/FiO2 calculator (On CPAP device)

Engineering Innovation

Computational Fluid Dynamics (CFD)

- CFD analysis provides a streamlined flow of air/oxygen under different flow rate conditions.
- Inlet/Outlet locations optimized for minimum CO2 rebreathing and maximum oxygenation

Engineering Innovation

Design Iterations for Improved Ergonomics and Patient Comfort

Neck ring with cushion and neck seal added to provide comfort and reduce leakage

> Two inlets near ears and one outlet in front of the nose to improve flow

System Verification and Validation

Test protocols designed to verify the functioning of the device

- Integrity, leakage and pressure hold test (up to 30 cm H2O pressure)
- Flow and pressure drop test (up to 40 LPM flow)
- PEEP pressure hold test (up to 40 LPM flow, 20 cm H2O pressure)
- High flow mode test (up to 60 LPM)
- Helmet fitment, fogging, and noise level test (on mannequin)
- Safety interlock check

System Verification and Validation

Path to Deployment: 2-Stage Clinical Studies

Stage I: Healthy Participants

- No history of respiratory disorder (preferred age < 35 years)
- In collaboration with IIT Bombay Hospital
- Following issues will studied
 - Noise harshness assessment
 - Discomfort due to retinal pressure
 - Assessment of helmet ergonomics
 - CO₂ concentration in the helmet

Stage II: COVID-19 Patients

- COVID 19 induced Hypoxia (preferred age > 35 years)
- In collaboration with Tata Memorial Hospital
- Following issues will be studies
 - SpO₂ measurement
 - Arterial Blood Gas (ABG) /Blood chemistry
 - Noise harshness assessment
 - Discomfort due to retinal pressure
 - Assessment of helmet ergonomics

Path to Deployment: Status

- The Helmet Patient Interface has been engineered for optimal performance and has been manufactured to design specifications
- It has been tested comprehensively for mechanical integrity and flow performance in the lab
- IIT Ethics committee suggestions received for Stage I clinical studies at IIT Bombay Hospital
- Plan to conduct Stage I studies before August 15
- Stage II studies at Tata Memorial Hospital will be conducted after the data is analyzed from Stage I
- Partners on-board with capability to scale up. An excellent example of Industry-Academia Collaboration

Acknowledgements

- Machine Tools Lab Students & Staff
 - Chaitanya Vundru, Bhargavi
 Ankamreddy, Arun Nayar, Vasudevan
 Nayar and Vishwas Kevale
- Thermax (Funding and product development support)
 - Dr. R. R. Sonde, Mr. Ganpathy lyer and Mr. Sameer Kulkrani
- IRCC & IIT colleagues (Funding and facilitation)
 - Prof. Milind Atrey, Prof. A. K. Suresh,
 Prof. Ankit Jain and IRCC staff
- IIT Hospital
 - Dr. Nisha Shah and hospital doctors
- InnAccel
 - Mr. Vijayarajan
- Dr. Satish Deopujari

Non-return Valve (NRV)

Manometer

Anti Asphyxia Valve

Catheter Port

HPI SPECIFICATIONS

- Continuous Air/O₂ delivery
- Adjustable flow in range 15 60 LPM (meets patient's peak inspiratory requirements)
- FiO2 between 21% (Air) to 100% (Pure O₂)

Extra Slide

• Expiratory pressure in range 5-20 cm H₂O

CPAP device provides the continuous flow at positive pressure and is attached to the inlet NRV.

arrest pathogens from expiration